Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jolanta Krucinska is active.

Publication


Featured researches published by Jolanta Krucinska.


Journal of Biological Chemistry | 2006

Nanostructures of APOBEC3G Support a Hierarchical Assembly Model of High Molecular Mass Ribonucleoprotein Particles from Dimeric Subunits

Joseph E. Wedekind; Richard Gillilan; Alena Janda; Jolanta Krucinska; Jason D. Salter; Ryan P. Bennett; Jay Raina; Harold C. Smith

Human APOBEC3G (hA3G) is a cytidine deaminase that restricts human immunodeficiency virus (HIV)-1 infection in a vif (the virion infectivity factor from HIV)-dependent manner. hA3G from HIV-permissive activated CD4+ T-cells exists as an inactive, high molecular mass (HMM) complex that can be transformed in vitro into an active, low molecular mass (LMM) variant comparable with that of HIV-non-permissive CD4+ T-cells. Here we present low resolution structures of hA3G in HMM and LMM forms determined by small angle x-ray scattering and advanced shape reconstruction methods. The results show that LMM particles have an extended shape, dissimilar to known cytidine deaminases, featuring novel tail-to-tail dimerization. Shape analysis of LMM and HMM structures revealed how symmetric association of dimers could lead to minimal HMM variants. These observations imply that the disruption of cellular HMM particles may require regulation of protein-RNA, as well as protein-protein interactions, which has implications for therapeutic development.


Journal of Biological Chemistry | 2009

The Structural Basis for Recognition of the PreQ0 Metabolite by an Unusually Small Riboswitch Aptamer Domain.

Robert C. Spitale; Andrew T. Torelli; Jolanta Krucinska; Vahe Bandarian; Joseph E. Wedekind

Riboswitches are RNA elements that control gene expression through metabolite binding. The preQ1 riboswitch exhibits the smallest known ligand-binding domain and is of interest for its economical organization and high affinity interactions with guanine-derived metabolites required to confer tRNA wobbling. Here we present the crystal structure of a preQ1 aptamer domain in complex with its precursor metabolite preQ0. The structure is highly compact with a core that features a stem capped by a well organized decaloop. The metabolite is recognized within a deep pocket via Watson-Crick pairing with C15. Additional hydrogen bonds are made to invariant bases U6 and A29. The ligand-bound state confers continuous helical stacking throughout the core fold, thus providing a platform to promote Watson-Crick base pairing between C9 of the decaloop and the first base of the ribosome-binding site, G33. The structure offers insight into the mode of ribosome-binding site sequestration by a minimal RNA fold stabilized by metabolite binding and has implications for understanding the molecular basis by which bacterial genes are regulated.


Journal of Biological Chemistry | 2011

Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.

Jermaine L. Jenkins; Jolanta Krucinska; Reid M. McCarty; Vahe Bandarian; Joseph E. Wedekind

Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters expression signal accessibility. Here we present crystal structures of the preQ1 riboswitch from Thermoanaerobacter tengcongensis in the preQ1-bound and free states. Although the mode of preQ1 recognition is similar to that observed for preQ0, surface plasmon resonance revealed an apparent KD of 2.1 ± 0.3 nm for preQ1 but a value of 35.1 ± 6.1 nm for preQ0. This difference can be accounted for by interactions between the preQ1 methylamine and base G5 of the aptamer. To explore conformational states in the absence of metabolite, the free-state aptamer structure was determined. A14 from the ceiling of the ligand pocket shifts into the preQ1-binding site, resulting in “closed” access to the metabolite while simultaneously increasing exposure of the ribosome-binding site. Solution scattering data suggest that the free-state aptamer is compact, but the “closed” free-state crystal structure is inadequate to describe the solution scattering data. These observations are distinct from transcriptional preQ1 riboswitches of the same class that exhibit strictly ligand-dependent folding. Implications for gene regulation are discussed.


Nature Chemical Biology | 2013

Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold

Joseph A. Liberman; Mohammad Salim; Jolanta Krucinska; Joseph E. Wedekind

PreQ1 riboswitches regulate genes by binding the pyrrolopyrimidine intermediate preQ1 during biosynthesis of the essential tRNA base queuosine. We report the first preQ1-II riboswitch structure at 2.3 Å resolution, which uses a novel fold to achieve effector recognition at the confluence of a three-way-helical junction flanking a pseudoknotted ribosome-binding site (RBS). The results account for preQ1-II-riboswitch-mediated translational control, and expand the known repertoire of ligand binding modes utilized by regulatory RNAs.


Biochemistry | 2009

A hydrodynamic analysis of APOBEC3G reveals a monomer-dimer-tetramer self-association that has implications for anti-HIV function.

Jason D. Salter; Jolanta Krucinska; Jay Raina; Harold C. Smith; Joseph E. Wedekind

The innate antiviral factor APOBEC3G (A3G) possesses RNA binding activity and deaminates HIV-1 DNA. High-molecular mass forms of A3G can be isolated from a variety of cell types but exhibit limited deaminase activity relative to low-molecular mass species prepared under RNA-depleted conditions. To investigate the fundamental oligomeric state and shape of A3G, we conducted sedimentation velocity analyses of the pure enzyme under RNA-deficient conditions. The results reveal a predominant dimer in equilibrium with minor monomeric and tetrameric species. Hydrodynamic modeling of the dimer supports an extended cylindrical shape that assembles into an elongated tetramer. Overall, the results provide physical restraints for the A3G quaternary structure that have implications for modulating antiviral function.


Journal of the American Chemical Society | 2009

Identification of an Imino Group Indispensable for Cleavage by a Small Ribozyme

Robert C. Spitale; Rosaria Volpini; Moriah G. Heller; Jolanta Krucinska; Gloria Cristalli; Joseph E. Wedekind

The hairpin ribozyme is a small, noncoding RNA (ncRNA) that catalyzes a site-specific phosphodiester bond cleavage reaction. Prior biochemical and structural analyses pinpointed the amidine moiety of base Ade38 as a key functional group in catalysis, but base changes designed to probe function resulted in localized misfolding of the active site. To define the requirements for chemical activity using a conservative modification, we synthesized and incorporated N1-deazaadenosine into the full-length ribozyme construct. This single-atom variant severely impairs activity, although the active-site fold remains intact in the accompanying crystal structures. The results demonstrate the essentiality of the imino moiety as well as the importance of its interaction with the substrate in the precatalytic and transition-state conformations. This work demonstrates the efficacy of single-atom approaches in the analysis of ncRNA structure-function relationships.


Journal of the American Chemical Society | 2012

A transition-state interaction shifts nucleobase ionization toward neutrality to facilitate small ribozyme catalysis.

Joseph A. Liberman; Man Guo; Jermaine L. Jenkins; Jolanta Krucinska; Yuanyuan Chen; Paul R. Carey; Joseph E. Wedekind

One mechanism by which ribozymes can accelerate biological reactions is by adopting folds that favorably perturb nucleobase ionization. Herein we used Raman crystallography to directly measure pK(a) values for the Ade38 N1 imino group of a hairpin ribozyme in distinct conformational states. A transition-state analogue gave a pK(a) value of 6.27 ± 0.05, which agrees strikingly well with values measured by pH-rate analyses. To identify the chemical attributes that contribute to the shifted pK(a), we determined crystal structures of hairpin ribozyme variants containing single-atom substitutions at the active site and measured their respective Ade38 N1 pK(a) values. This approach led to the identification of a single interaction in the transition-state conformation that elevates the base pK(a) > 0.8 log unit relative to the precatalytic state. The agreement of the microscopic and macroscopic pK(a) values and the accompanying structural analysis supports a mechanism in which Ade38 N1(H)+ functions as a general acid in phosphodiester bond cleavage. Overall the results quantify the contribution of a single electrostatic interaction to base ionization, which has broad relevance for understanding how RNA structure can control chemical reactivity.


Biochemical and Biophysical Research Communications | 2010

APOBEC-1 Complementation Factor (ACF) forms RNA-Dependent Multimers

Chad A. Galloway; Amit Kumar; Jolanta Krucinska; Harold C. Smith

Limited proteolysis of APOBEC-1 complementation factor (ACF) and computational secondary structure modeling were used to guide the construction of a well-folded, truncation protein spanning residues 1-320 and containing three RNA recognition motifs (RRMs). ACF320 bound preferentially to apoB mRNA and supported APOBEC-1 dependent editing at 40% of the activity of full length ACF. Live cell FRET and immunoprecipitation assays revealed that ACF320 formed homomultimers in situ that were bridged by RNA. Our study predicted that the C to U editosome may be assembled on the mooring sequence of apoB mRNA as a dimer of ACF bound to a dimer of APOBEC-1.


Acta Crystallographica Section D-biological Crystallography | 2007

A posteriori design of crystal contacts to improve the X-ray diffraction properties of a small RNA enzyme.

Celeste MacElrevey; Robert C. Spitale; Jolanta Krucinska; Joseph E. Wedekind

Insertion of a dangling 5′-uracil and incorporation of synthetic linkers at the domain interface of a minimal hairpin ribozyme have been investigated as means of favorably influencing crystal packing. These modifications lead to changes in the ribozyme’s structural elements that mimic packing within a natural four-way helical junction, thereby providing an example of how knowledge-based design can be used to enhance the diffraction properties of a tertiarily folded RNA.


ChemBioChem | 2013

Structural Characterization of Nitrosomonas Europaea Cytochrome C-552 Variants with Marked Differences in Electronic Structure.

Mehmet Can; Jolanta Krucinska; Giorgio Zoppellaro; Niels H. Andersen; Joseph E. Wedekind; Hans-Petter Hersleth; K. Kristoffer Andersson; Kara L. Bren

Nitrosomonas europaea cytochrome c‐552 (Ne c‐552) variants with the same His/Met axial ligand set but with different EPR spectra have been characterized structurally, to aid understanding of how molecular structure determines heme electronic structure. Visible light absorption, Raman, and resonance Raman spectroscopy of the protein crystals was performed along with structure determination. The structures solved are those of Ne c‐552, which displays a “HALS” (or highly anisotropic low‐spin) EPR spectrum, and of the deletion mutant Ne N64Δ, which has a rhombic EPR spectrum. Two X‐ray crystal structures of wild‐type Ne c‐552 are reported; one is of the protein isolated from N. europaea cells (Ne c‐552n, 2.35 Å resolution), and the other is of recombinant protein expressed in Escherichia coli (Ne c‐552r, 1.63 Å resolution). Ne N64Δ crystallized in two different space groups, and two structures are reported [monoclinic (2.1 Å resolution) and hexagonal (2.3 Å resolution)]. Comparison of the structures of the wild‐type and mutant proteins reveals that heme ruffling is increased in the mutant; increased ruffling is predicted to yield a more rhombic EPR spectrum. The 2.35 Å Ne c‐552n structure shows 18 molecules in the asymmetric unit; analysis of the structure is consistent with population of more than one axial Met configuration, as seen previously by NMR. Finally, the mutation was shown to yield a more hydrophobic heme pocket and to expel water molecules from near the axial Met. These structures reveal that heme pocket residue 64 plays multiple roles in regulating the axial ligand orientation and the interaction of water with the heme. These results support the hypothesis that more ruffled hemes lead to more rhombic EPR signals in cytochromes c with His/Met axial ligation.

Collaboration


Dive into the Jolanta Krucinska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Man Guo

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge