Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason D. Toft is active.

Publication


Featured researches published by Jason D. Toft.


Estuaries | 2003

The effects of introduced water hyacinth on habitat structure, invertebrate assemblages, and fish diets

Jason D. Toft; Charles A. Simenstad; Jeffery R. Cordell; Lenny Grimaldo

The South American floating aquatic plant water hyacinth (Eichhornia crassipes) has a history of worldwide invasions, including a 1904 introduction into the Sacramento-San Joaquin Delta, California. The native pennywort (Hydrocotyle umbellata) occupies similar habitats in the Delta and is extensively used by resident invertebrates and fish. We sought to discover if an invader would be functionally equivalent to the native plant, by asking whether the encroadhing hyacinth modified the invertebrate assemblage structure and fish-invertebrate food web relative to pennywort. We sampled epiphytic, epibenthic, and benthic invertebrates, and plant canopy insects in patches of hyacinth and pennywort, and analyzed fish diets at three sites in the Delta during 1998. We also measured habitat structure (leaf density, root biomass, and surface area). In 1999, following control and absence of hyacinth, we again measured epiphytic invertebrates in pennywort. We found differences between hyacinth and pennywort in structure, associated invertebrates, and fish diets. Most measurements inferred functional non-equivalency between hyacinth and pennywort, although some functional equivalency and natural variation existed. Leaf and insect densities were significantly higher in pennywort and there were also significant differences in insect assemblage compositions. Hyacinth roots in the water column had significantly more surface area. Densities of epibenthic and benthic aquatic invertebrates were typically greater in pennywort and taxonomic compositions of aquatic invertebrate assemblages showed significant differences. Amphipods and isopods living epiphytically in the root masses were particularly abundant, including several newly discovered introduced species: the amphipodCrangonyx floridanus and the isopodsCaecidotea racovitai andAsellus hilgendorfii. The native amphipodHyalella azteca was more abundant in pennywort and heavily preyed upon by fish, while the non-indigenousC. floridanus was more abundant in hyacinth and not prevalent in fish diets. The introduction of hyacinth to the Delta has caused significant ecological alterations in the surrounding community, due to hyacinth being functionally different from native patches of pennywort.


North American Journal of Fisheries Management | 2007

Fish Distribution, Abundance, and Behavior along City Shoreline Types in Puget Sound

Jason D. Toft; Jeffery R. Cordell; Charles A. Simenstad; Lia Stamatiou

Abstract Shoreline modifications, such as bulkheads, riprap, and overwater structures, have altered many of the natural habitats in nearshore urbanized areas surrounding coastal cities, including those in Puget Sound, Washington. The effects of such structures on ecological processes are poorly known, especially those impacting juvenile salmonids Oncorhynchus spp. The goal of our study was to compare the relative abundance and behavior of juvenile salmonids and other fishes along various modified and undeveloped shoreline types. We used enclosure nets and snorkel surveys to sample fishes during high tides in areas adjacent to shore at five main habitat types: cobble beach, sand beach, riprap extending into the upper intertidal zone, deep riprap extending into the subtidal zone, and the edge of overwater structures. Bottom-dwelling fishes exhibited the only significant differences in density among cobble beach, sand beach, and riprap that extended into the upper intertidal zone. This suggests that substrat...


Estuaries and Coasts | 2012

Ecological Effects of Shoreline Armoring on Intertidal Habitats of a Puget Sound Urban Estuary

Sarah A. Morley; Jason D. Toft; Karrie M. Hanson

Shoreline armoring is extensive in urban areas worldwide, but the ecological consequences are poorly documented. We mapped shoreline armoring along the Duwamish River estuary (Washington State, USA) and evaluated differences in temperature, invertebrates, and juvenile salmon (Oncorhynchus spp.) diet between armored and unarmored intertidal habitats. Mean substrate temperatures were significantly warmer at armored sites, but water temperature similar to unarmored habitats. Epibenthic invertebrate densities were over tenfold greater on unarmored shorelines and taxa richness double that of armored locations. Taxa richness of neuston invertebrates was also higher at unarmored sites, but abundance similar. We did not detect differences in Chinook (O. tshawytscha) diet, but observed a higher proportion of benthic prey for chum (O. keta) from unarmored sites. Given that over 66% of the Duwamish shoreline is armored—similar to much of south and central Puget Sound—our results underscore the need for further ecological study to address the impacts of estuary armoring.


Estuaries and Coasts | 2016

Shoreline Armoring in an Estuary Constrains Wrack-Associated Invertebrate Communities

Sarah M. Heerhartz; Jason D. Toft; Jeffery R. Cordell; Megan N. Dethier; Andrea S. Ogston

Beach wrack is an organic subsidy that supports high intertidal and supralittoral invertebrate communities in many coastal systems. Beaches fringed with riparian vegetation accumulate wrack from both terrestrial leaf litter and marine algae/seagrasses, forming a reciprocal connection. Previous research has shown that shoreline armoring disrupts this marine-terrestrial connection and alters the amount and composition of beach wrack. We sampled invertebrates associated with beach wrack at 29 paired armored and unarmored beaches in Puget Sound, WA and conducted wrack decomposition experiments. Armored beaches had significantly fewer invertebrates as well as different assemblages. Unarmored assemblages were characterized by talitrid amphipods and dipteran and coleopteran insects (flies and beetles), and were correlated with the amount of beach wrack and logs, the proportion of terrestrial material in the wrack, and the maximum elevation of the beach. Experiments showed that talitrid amphipods and oligochaete worms were positively correlated with wrack decomposition rates. The substantial reduction in high-shore invertebrates at armored beaches represents a decrease in subsidies to secondary consumers in both adjacent terrestrial and nearshore ecosystems. These armoring effects may thus cascade, via altered food webs, to organisms in other environments. Our sampling of multiple armored-unarmored beach pairs allowed us to control for variability of many environmental parameters, improving our ability to identify armoring-related differences, and greatly expanding the scale of inference of previous studies showing the negative effects of armoring on beach fauna.


North American Journal of Fisheries Management | 2014

Effects of Seawalls and Piers on Fish Assemblages and Juvenile Salmon Feeding Behavior

Stuart H. Munsch; Jeffery R. Cordell; Jason D. Toft; Erin E. Morgan

AbstractShoreline modifications, such as seawall armoring and piers, are ubiquitous along developed waterfronts worldwide, and recent research suggests that their ecological effects are primarily negative. We utilized snorkel surveys to quantify the effects of seawalls and piers on fish in nearshore habitats of an urbanized estuary in Puget Sound, Washington. We observed 17 species of fish and 4 species of crab during April–August 2012 at sites modified by seawalls and piers and at reference beach sites with minimal anthropogenic structures. Species assemblages at modified sites were significantly different from those at reference beaches. At modified sites, fish distribution and assemblage structure varied with proximity to the shade cast by piers; overall fish abundances were reduced under piers, and the greatest abundances were observed at high tides in areas directly adjacent to piers. Juvenile Pacific salmon Oncorhynchus spp. were the dominant fish species, and piers reduced their presence and feedin...


Biological Invasions | 2000

Detecting invasions of marine organisms: kamptozoan case histories

Kerstin Wasson; Betsy Von Holle; Jason D. Toft; Gregory M. Ruiz

Detecting marine invasions can be challenging, especially for lesser-known taxa, and requires (a) thorough field surveys of the region of interest for members of the taxon, (b) systematic analyses to identify all species found, (c) literature searches for the worldwide distribution of these species and for previous records of the taxon in this region, and (d) application of rigorous criteria to assess whether each species found is native or introduced. We carried out these steps in order to detect and document kamptozoan (entoproct) invasions on the American mid-Atlantic coast. We report on the occurrence of two colonial kamptozoans (Barentsia benedeni, Loxosomatoides laevis) in Chesapeake Bay (Maryland and Virginia, USA). On the American Atlantic coast, B. benedeni had previously only been reported from Massachusetts, although this species has a worldwide distribution in bays and harbors. The genus Loxosomatoides had not previously been reported from North America and L. laevis was known only from India. Since the genus Loxosomatoides was very poorly characterized, we briefly review all four of its species, which differ only slightly from each other. We have also synonymized L. japonicum with L. laevis. We did not find any of the kamptozoan species previously recorded in surveys of Chesapeake Bay and the American Atlantic coast. This is the first detailed consideration of anthropogenic influences on kamptozoan distributions, and we emphasize that most kamptozoan species are cryptogenic pending further investigation.


Biological Invasions | 2013

Ecological implications of invasive tunicates associated with artificial structures in Puget Sound, Washington, USA

Jeffery R. Cordell; Claire Levy; Jason D. Toft

The non-native tunicates Didemnum vexillum, Ciona savignyi, and Styela clava are of concern to resource managers of Puget Sound, Washington, USA because they have been shown to threaten native species diversity and shellfish aquaculture in other regions. Invasive tunicates in Puget Sound occur mainly on man-made structures such as floating docks and aquaculture facilities. We conducted studies of the three species of concern and a fourth introduced tunicate, Botrylloides violaceus, that occur on these structures to evaluate their effects on mussels and native invertebrate communities. Because most studies of community effects of tunicates have dealt with sessile fouling organisms, we focused instead on epibenthic organisms such as meiofaunal harpacticoid copepods and macrofaunal polychaetes and amphipods that are known to be important prey for juvenile salmon and other small fish. Similar studies have shown mixed results, with negative, positive, or no effects depending on the species. We also found few community-level effects. Abundances of several species were lower when tunicates were present, but only at some of the sites. Several other species, including a non-native isopod, were significantly more abundant in the presence of tunicates. However, in most cases results were not statistically significant and more intensive, controlled sampling or experiments may be needed to demonstrate any consistent tunicate effects. Although invasive tunicates cause problems for mussel growers elsewhere, we did not find negative effects on mussels at four sites in Puget Sound. Given the large impacts known to accompany tunicate invasions elsewhere and their relatively recent invasions into Puget Sound, monitoring of their populations and effects should continue in the region.


Environmental Biology of Fishes | 2015

Movement patterns and feeding behavior of juvenile salmon (Oncorhynchus spp.) along armored and unarmored estuarine shorelines

Sarah M. Heerhartz; Jason D. Toft

Estuarine nearshore environments are important habitats for many organisms, including juveniles of several Pacific salmon species (Oncorhynchus spp.). These habitats provide shallow water and high prey productivity, but are increasingly modified by anthropogenic activity including shoreline armoring, which disrupts connectivity between aquatic and terrestrial realms and artificially steepens the shore. Such effects may have adverse consequences for juvenile salmon, particularly Chinook (O. tshawytscha) and chum (O. nerka), which are known to rely on shallow, productive nearshore habitats for foraging and refuge from predators during their outmigration from natal streams to the sea. We developed snorkel methods to quantify feeding rates, movement rates, and path complexity of juvenile salmon along armored and unarmored shorelines in Puget Sound, WA, USA. We found that juvenile salmon had relatively high feeding rates along all shoreline types, but that path straightness and movement rates showed some variation between armored and unarmored sites. Feeding fish swam in more complex paths and were observed in larger schools than non-feeding fish, and path straightness and movement rate were negatively correlated with proportion of time feeding. Feeding behavior, school size, and movement rates also showed variation by species. Shoreline type (armored or unarmored) influenced juvenile salmon distribution, and unarmored shorelines appear to accommodate a greater diversity of movement patterns than armored shorelines. Our results show that juvenile salmon feed at high rates along armored and unarmored estuarine shorelines, thus decreased prey availability or altered prey resources are likely the most detrimental foraging effects of armoring in estuarine nearshore ecosystems.


Northwest Science | 2014

Shoreline Armoring Impacts and Beach Restoration Effectiveness Vary with Elevation

Jason D. Toft; Jeffery R. Cordell; Elizabeth A. Armbrust

Abstract Removal of shoreline armoring can potentially restore lost biological functions to intertidal beaches and increase connectivity between aquatic and terrestrial realms. Conceptual models are needed, as ecologists, managers, and engineers are all concerned with finding ways to restore natural aspects to shoreline features that are stable and resilient in the face of global climate change and sea level rise. We identify the main effects of armoring on shoreline biota, examine the ecological response of a restored site where a seawall was removed, and use this to form a conceptual basis for the importance of elevation on armoring effects and restoration potential. Restoration completed in February 2005 at Seahurst Park (Puget Sound, Washington, United States) included seawall removal and creation of a beach. We monitored the site over seven years before and after restoration and compared invertebrate assemblages to a reference beach, spanning four elevations. We present a conceptual model illustrating that biotic assemblages at higher elevations directly affected by shoreline armoring can respond rapidly to restoration, while those at lower elevations may recover slowly or be adversely impacted. Understanding these concepts can improve our ability to maintain ecologically diverse shorelines while still providing coastal protection for people and property.


Northwest Science | 2011

Variability in Isotopic (δ13C, δ15N, δ34S) Composition of Organic Matter Contributing to Detritus-Based Food Webs of the Columbia River Estuary

Greer O. Maier; Jason D. Toft; Charles A. Simenstad

Abstract The use of stable isotopes has recently grown in studies of trophic structure and the recruitment and migration patterns of consumers. This type of analysis allows the flow of organic matter and trophic relationships to be outlined within complex systems. Although multiple stable isotope analysis is useful in distinguishing linkages between sources and consumers, its efficacy is contingent on the isotopic similarity within each source and the distinctiveness of producer isotope values. As part of a study investigating juvenile Chinook salmon (Oncorhynchus tshawytscha) food webs in the Columbia River estuary we examined the isotopic (&dgr;13C, &dgr;15N, and &dgr;34S) composition of five prominent primary producers. We sought to examine statistical variability of primary producer isotope values and its effects on differentiation between sources. We found that within-group isotopic variability occurs at different scales, related to the heterogeneous landscape in which producers grow. Aquatic and wetland vascular plants displayed the greatest range in isotopic composition while benthic algae and particulate organic matter were more constrained in their isotope signatures. When examining differences between groups we found that although &dgr;13C was the most variable isotope ratio, it was also the most useful in distinguishing sources, especially benthic producers compared to water column and emergent producers. Signatures of &dgr;15N and &dgr;34S were most useful in differentiating benthic algal and vascular marsh plant groups. Isotopic composition along with chlorophyll and elemental composition was also useful in distinguishing phytoplankton samples from particulate organic matter (POM) samples. The type and extent of isotopic variability revealed by this study will help inform future food web studies using isotopes to characterize trophic linkages in large estuaries such as the Columbia River estuary.

Collaboration


Dive into the Jason D. Toft's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lia Stamatiou

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ayesha Gray

Mississippi Department of Marine Resources

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron T. David

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge