Jason J. Serpa
University of Victoria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason J. Serpa.
Molecular & Cellular Proteomics | 2011
Evgeniy V. Petrotchenko; Jason J. Serpa; Christoph H. Borchers
Successful application of cross-linking combined with mass spectrometry for structural proteomics demands specifically designed cross-linking reagents to address challenges in the detection and assignment of cross-links. A combination of affinity enrichment, isotopic coding, and cleavage of the cross-linker is beneficial for detection and identification of the peptide cross-links. Here we describe a novel cross-linker, cyanurbiotindipropionylsuccinimide (CBDPS), that allows affinity enrichment of cross-linker-containing peptides with avidin. Affinity enrichment eliminates interfering non-cross-linked peptides and allows the researcher to focus on the analysis of the cross-linked peptides. CBDPS is also isotopically coded and CID-cleavable. The cleaved fragments still contain a portion of the isotopic label and can therefore be distinguished from unlabeled fragments by their distinct isotopic signatures in the MS/MS spectra. This cleavage information has been incorporated into a program for the automatic analysis of the MS/MS spectra of the cross-links. This allows rapid determination of cross-link type in addition to facilitating identification of the individual peptides constituting the interpeptide cross-links. Thus, affinity enrichment combined with isotopic coding and CID cleavage allows in-depth mass spectrometric analysis of the peptide cross-links. We have characterized the performance of CBDPS on the 120-kDa protein heterodimer of HIV reverse transcriptase.
Journal of Biological Chemistry | 2013
Michelle L. Tonkin; Silvia A. Arredondo; Bianca C. Loveless; Jason J. Serpa; Karl A.T. Makepeace; Natarajan Sundar; Evgeniy V. Petrotchenko; Louis H. Miller; Michael E. Grigg; Martin J. Boulanger
Background: Pf12 is the archetypal member of the 6-Cys protein family, members of which are important Plasmodium vaccine targets. Results: Purifying selection and apical localization of Pf12, crystal structure of tandem 6-Cys domains, and mass spectrometry of cross-linked Pf12-Pf41 heterodimer are shown. Conclusion: A functionally important role for Pf12 and potential for antiparallel heterodimer is provided. Significance: First full-length 6-Cys protein structure and first details of heterodimer organization are revealed. Plasmodium falciparum is the most devastating agent of human malaria. A major contributor to its virulence is a complex lifecycle with multiple parasite forms, each presenting a different repertoire of surface antigens. Importantly, members of the 6-Cys s48/45 family of proteins are found on the surface of P. falciparum in every stage, and several of these antigens have been investigated as vaccine targets. Pf12 is the archetypal member of the 6-Cys protein family, containing just two s48/45 domains, whereas other members have up to 14 of these domains. Pf12 is strongly recognized by immune sera from naturally infected patients. Here we show that Pf12 is highly conserved and under purifying selection. Immunofluorescence data reveals a punctate staining pattern with an apical organization in late schizonts. Together, these data are consistent with an important functional role for Pf12 in parasite-host cell attachment or invasion. To infer the structural and functional diversity between Pf12 and the other 11 6-Cys domain proteins, we solved the 1.90 Å resolution crystal structure of the Pf12 ectodomain. Structural analysis reveals a unique organization between the membrane proximal and membrane distal domains and clear homology with the SRS-domain containing proteins of Toxoplasma gondii. Cross-linking and mass spectrometry confirm the previously identified Pf12-Pf41 heterodimeric complex, and analysis of individual cross-links supports an unexpected antiparallel organization. Collectively, the localization and structure of Pf12 and details of its interaction with Pf41 reveal important insight into the structural and functional properties of this archetypal member of the 6-Cys protein family.
European Journal of Mass Spectrometry | 2012
Jason J. Serpa; Carol E. Parker; Evgeniy V. Petrotchenko; Jun Han; Jingxi Pan; Christoph H. Borchers
Structural proteomics is the application of protein chemistry and modern mass spectrometric techniques to problems such as the characterization of protein structures and assemblies and the detailed determination of protein-protein interactions. The techniques used in structural proteomics include crosslinking, photoaffinity labeling, limited proteolysis, chemical protein modification and hydrogen/deuterium exchange, all followed by mass spectrometric analysis. None of these methods alone can provide complete structural information, but a combination of these complementary approaches can be used to provide enough information for answering important biological questions. Structural proteomics can help to determine, for example, the detailed structure of the interfaces between proteins that may be important drug targets and the interactions between proteins and ligands. In this review, we have tried to provide a brief overview of structural proteomics methodologies, illustrated with examples from our laboratory and from the literature.
Molecular & Cellular Proteomics | 2012
Evgeniy V. Petrotchenko; Jason J. Serpa; Darryl B. Hardie; Mark V. Berjanskii; Bow P. Suriyamongkol; David S. Wishart; Christoph H. Borchers
Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a “family” of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrPC) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrPC and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90–124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including a Lys185–Lys220 cross-link, which is unique to the PrPβ and thus may be indicative of the conformational change involved in the formation of prion protein oligomers.
Analytical Chemistry | 2010
Evgeniy V. Petrotchenko; Jason J. Serpa; Christoph H. Borchers
Cross-linking combined with mass spectrometry has great potential for determining three-dimensional structures of proteins and protein assemblies. One of the main analytical challenges of this method is the specific detection and identification of the inter-peptide crosslinks in the peptide mixture after enzymatic digestion of the cross-linked protein complex. These inter-peptide crosslinks are important because they provide the critical distance information needed for structural proteomics studies. In this paper, we demonstrate the use of isotopically coded N-terminal modification (ICNTM) in combination with isotopically coded cross-linkers (ICCL) for specific detection of inter-peptide crosslinks. Inter-peptide crosslinks contain two amino termini, compared to one in the case of free peptides, dead-end crosslinks, or intra-peptide crosslinks. Therefore, N-terminal modification with a 1:1 mixture of heavy and light isotopically coded reagents produces inter-peptide crosslinks with a distinct isotopic signature (a 1:2:1 ratio). Modification also occurs at the epsilon-amino groups of non-cross-linked lysine residues, resulting in two modifications per free lysine-containing peptide. However, if ICCL and ICNTM are used together, inter-peptide crosslinks can be distinguished from free lysine-containing peptides. Specialized software has also been developed for the analysis of ICCL + ICNTM experimental data. This procedure, combined with software for data analysis, provides a simple and rapid method for specific detection of inter-peptide crosslinks.
RNA | 2014
Geoff Gudavicius; David Dilworth; Jason J. Serpa; Nicole Sessler; Evgeniy V. Petrotchenko; Christoph H. Borchers; Christopher J. Nelson
Peptidyl-proline isomerases of the FK506-binding protein (FKBP) family belong to a class of enzymes that catalyze the cis-trans isomerization of prolyl-peptide bonds in proteins. A handful of FKBPs are found in the nucleus, implying that the isomerization of proline in nuclear proteins is enzymatically controlled. FKBP25 is a nuclear protein that has been shown to associate with chromatin modifiers and transcription factors. In this study, we performed the first proteomic characterization of FKBP25 and found that it interacts with numerous ribosomal proteins, ribosomal processing factors, and a small selection of chromatin modifiers. In agreement with previous reports, we found that nucleolin is a major FKBP25-interacting protein and demonstrated that this interaction is dependent on rRNA. FKBP25 interacts with the immature large ribosomal subunit in nuclear extract but does not associate with mature ribosomes, implicating this FKBPs action in ribosome biogenesis. Despite engaging nascent 60S ribosomes, FKBP25 does not affect steady-state levels of rRNAs or its pre-rRNA intermediates. We conclude that FKBP25 is likely recruited to preribosomes to chaperone one of the protein components of the ribosome large subunit.
Journal of Proteomics | 2014
Evgeniy V. Petrotchenko; Jason J. Serpa; Karl A.T. Makepeace; Nicholas I. Brodie; Christoph H. Borchers
UNLABELLED Crosslinking mass spectrometric applications for the study of proteins and protein complexes benefit from using (15)N metabolically labeled proteins. Peptides, derived from crosslinked (14)N and (15)N proteins (used in a 1:1molar ratio), exhibit specific mass spectrometric signatures of doublets of peaks, reflecting the number of nitrogen atoms in the peptides. This can be used as an additional search criterion for assignment of the crosslinks. Here, we describe the further development of our ICC-CLASS software suite which is designed for automatic analysis of mass spectrometric crosslinking data, by the addition of the (14)N(15)N DXMSMS Match program. The program is designed to assist in distinguishing inter- from intra-molecular crosslinks at the interface of homodimers in protein aggregation studies. The program takes into account the number of nitrogen atoms present in (14)N(15)N-labeled crosslinked peptides and uses it as an additional parameter for the identification of crosslinks based on both the MS and MS/MS spectra. This greatly increases the confidence of the assignments, and this approach can be successfully used in other types of complicated crosslinking experiments, such as those with non-specific crosslinking sites, non-specific digestion, zero-length crosslinking, or crosslinking with unknown reaction mechanisms, by facilitating the use of (15)N metabolically labeled proteins. BIOLOGICAL SIGNIFICANCE The new (14)N(15)N DXMSMS Match software program is a practical tool for the efficient assignment of crosslinks from LC-MS/MS experiments using an equimolar mixture of non-labeled and (15)N metabolically labeled proteins. It greatly facilitates automated data analysis from complicated crosslinking experiments, such as those using zero-length crosslinkers and those involving only a few crosslinking and digestion site restrictions.
Methods of Molecular Biology | 2014
Evgeniy V. Petrotchenko; Karl A.T. Makepeace; Jason J. Serpa; Christoph H. Borchers
Cross-linking combined with mass spectrometry is a powerful technique to study protein structure. Here, we present an optimized protocol for the preparation, processing, and analysis of a protein sample cross-linked with isotopically coded, affinity-enrichable, and CID-cleavable cross-linker CyanurBiotinDimercaptoPropionylSuccinimide using LC/ESI-MS/MS on a Thermo Scientific Orbitrap mass spectrometer.
Journal of Proteomics | 2014
Jason J. Serpa; Karl A.T. Makepeace; Tristan H. Borchers; David S. Wishart; Evgeniy V. Petrotchenko; Christoph H. Borchers
UNLABELLED The conversion of the cellular prion protein (PrP(C)) into aggregated ß-oligomeric (PrP(ß)) and fibril (PrP(Sc)) forms is the central element in the development of prion diseases. Here we report the first use of isotopically-coded hydrogen peroxide surface modification combined with mass spectrometry (MS) for the differential characterization of PrP(C) and PrP(β). (16)O and (18)O hydrogen peroxide were used to oxidize methionine and tryptophan residues in PrP(C) and PrP(β), allowing for the relative quantitation of the extent of modification of each form of the prion protein. After modification with either light or heavy forms of hydrogen peroxide (H2(16)O2 and H2(18)O2), the PrP(C) and PrP(β) forms of the protein were then combined, digested with trypsin, and analysed by LC-MS. The (18)O/(16)O signal intensity ratios were used to determine the relative levels of oxidation of specific amino acids in the PrP(C) and PrP(β) forms. Using this approach we have detected several residues that are differentially-oxidized between the native and β-oligomeric prion forms, allowing determination of the regions of PrP(C) involved in the formation of PrP(β) aggregates. Modification of these residues in the β-oligomeric form is compatible with a flip of the β1-H1-β2 loop away from amphipathic helices 2 and 3 during conversion. BIOLOGICAL SIGNIFICANCE Surface modification using isotopically-coded hydrogen peroxide has allowed quantitative comparison of the exposure of methionine and tryptophan residues in PrP(C) and PrP(ß) forms of prion protein. Detected changes in surface exposure of a number of residues have indicated portions of the PrP structure which undergo conformational transition upon conversion. This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Methods | 2015
Karl A.T. Makepeace; Jason J. Serpa; Evgeniy V. Petrotchenko; Christoph H. Borchers
Disulfide bonds are valuable constraints in protein structure modeling. The Cys-Cys disulfide bond undergoes specific fragmentation under CID and, therefore, can be considered as a CID-cleavable crosslink. We have recently reported on the benefits of using non-specific digestion with proteinase K for inter-peptide crosslink determination. Here, we describe an updated application of our CID-cleavable crosslink analysis software and our crosslinking analysis with non-specific digestion methodology for the robust and comprehensive determination of disulfide bonds in proteins, using Orbitrap LC/ESI-MS/MS data.