Jason K. Dutra
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason K. Dutra.
Journal of Medicinal Chemistry | 2011
Antonia F. Stepan; Kapil Karki; W. Scott McDonald; Peter Hans Dorff; Jason K. Dutra; Kenneth J. DiRico; Annie Won; Chakrapani Subramanyam; Ivan Viktorovich Efremov; Christopher J. O’Donnell; Charles E. Nolan; Stacey L. Becker; Leslie R. Pustilnik; Blossom Sneed; Hao Sun; Yasong Lu; Ashley Robshaw; David Riddell; Theresa J. O'Sullivan; Evelyn Sibley; Steven Capetta; Kevin Atchison; Andrew J. Hallgren; Emily Miller; Anthony Wood; R. Scott Obach
A metabolism-based approach toward the optimization of a series of N-arylsulfonamide-based γ-secretase inhibitors is reported. The lead cyclohexyl analogue 6 suffered from extensive oxidation on the cycloalkyl motif by cytochrome P450 3A4, translating into poor human liver microsomal stability. Knowledge of the metabolic pathways of 6 triggered a structure-activity relationship study aimed at lowering lipophilicity through the introduction of polarity. This effort led to several tetrahydropyran and tetrahydrofuran analogues, wherein the 3- and 4-substituted variants exhibited greater microsomal stability relative to their 2-substituted counterparts. Further reduction in lipophilicity led to the potent γ-secretase inhibitor and 3-substituted oxetane 1 with a reduced propensity toward oxidative metabolism, relative to its 2-substituted isomer. The slower rates of metabolism with 3-substituted cyclic ethers most likely originate from reductions in lipophilicity and/or unfavorable CYP active site interactions with the heteroatom. Preliminary animal pharmacology studies with a representative oxetane indicate that the series is generally capable of lowering Aβ in vivo. As such, the study also illustrates the improvement in druglikeness of molecules through the use of the oxetane motif.
Journal of Medicinal Chemistry | 2012
Ivan Viktorovich Efremov; Felix Vajdos; Kris A. Borzilleri; Steven Capetta; Hou Chen; Peter Hans Dorff; Jason K. Dutra; Steven Wayne Goldstein; Mahmoud N. Mansour; Alexander S. McColl; Stephen Noell; Christine E. Oborski; Thomas N. O’Connell; Theresa J. O’Sullivan; Jayvardhan Pandit; Hong Wang; BinQing Wei; Jane M. Withka
The aspartyl protease β-secretase, or BACE, has been demonstrated to be a key factor in the proteolytic formation of Aβ-peptide, a major component of plaques in the brains of Alzheimers disease (AD) patients, and inhibition of this enzyme has emerged as a major strategy for pharmacologic intervention in AD. An X-ray-based fragment screen of Pfizers proprietary fragment collection has resulted in the identification of a novel BACE binder featuring spiropyrrolidine framework. Although exhibiting only weak inhibitory activity against the BACE enzyme, the small compound was verified by biophysical and NMR-based methods as a bona fide BACE inhibitor. Subsequent optimization of the lead compound, relying heavily on structure-based drug design and computational prediction of physiochemical properties, resulted in a nearly 1000-fold improvement in potency while maintaining ligand efficiency and properties predictive of good permeability and low P-gp liability.
Journal of Medicinal Chemistry | 2015
Michael Aaron Brodney; Elizabeth Mary Beck; Christopher Ryan Butler; Gabriela Barreiro; Eric F. Johnson; David Riddell; Kevin D. Parris; Charles E. Nolan; Ying Fan; Kevin Atchison; Cathleen Gonzales; Ashley Robshaw; Shawn D. Doran; Mark W. Bundesmann; Leanne M. Buzon; Jason K. Dutra; Kevin E. Henegar; Erik LaChapelle; Xinjun Hou; Bruce N. Rogers; Jayvardhan Pandit; Ricardo Lira; Luis Martinez-Alsina; Peter Mikochik; John C. Murray; Kevin Ogilvie; Loren Price; Subas M. Sakya; Aijia Yu; Yong Zhang
In recent years, the first generation of β-secretase (BACE1) inhibitors advanced into clinical development for the treatment of Alzheimer’s disease (AD). However, the alignment of drug-like properties and selectivity remains a major challenge. Herein, we describe the discovery of a novel class of potent, low clearance, CNS penetrant BACE1 inhibitors represented by thioamidine 5. Further profiling suggested that a high fraction of the metabolism (>95%) was due to CYP2D6, increasing the potential risk for victim-based drug–drug interactions (DDI) and variable exposure in the clinic due to the polymorphic nature of this enzyme. To guide future design, we solved crystal structures of CYP2D6 complexes with substrate 5 and its corresponding metabolic product pyrazole 6, which provided insight into the binding mode and movements between substrate/inhibitor complexes. Guided by the BACE1 and CYP2D6 crystal structures, we designed and synthesized analogues with reduced risk for DDI, central efficacy, and improved hERG therapeutic margins.
Journal of Medicinal Chemistry | 2015
Christopher Ryan Butler; Michael Aaron Brodney; Elizabeth Mary Beck; Gabriela Barreiro; Charles E. Nolan; Feng Pan; Felix Vajdos; Kevin Parris; Alison H. Varghese; Christopher John Helal; Ricardo Lira; Shawn D. Doran; David Riddell; Leanne M. Buzon; Jason K. Dutra; Luis Martinez-Alsina; Kevin Ogilvie; John C. Murray; Joseph M. Young; Kevin Atchison; Ashley Robshaw; Cathleen Gonzales; Jinlong Wang; Yong Zhang; Brian T. O’Neill
The identification of centrally efficacious β-secretase (BACE1) inhibitors for the treatment of Alzheimers disease (AD) has historically been thwarted by an inability to maintain alignment of potency, brain availability, and desired absorption, distribution, metabolism, and excretion (ADME) properties. In this paper, we describe a series of truncated, fused thioamidines that are efficiently selective in garnering BACE1 activity without simultaneously inhibiting the closely related cathepsin D or negatively impacting brain penetration and ADME alignment, as exemplified by 36. Upon oral administration, these inhibitors exhibit robust brain availability and are efficacious in lowering central Amyloid β (Aβ) levels in mouse and dog. In addition, chronic treatment in aged PS1/APP mice effects a decrease in the number and size of Aβ-derived plaques. Most importantly, evaluation of 36 in a 2-week exploratory toxicology study revealed no accumulation of autofluorescent material in retinal pigment epithelium or histology findings in the eye, issues observed with earlier BACE1 inhibitors.
Journal of Organic Chemistry | 2013
Che-Wah Lee; Ricardo Lira; Jason K. Dutra; Kevin Ogilvie; Brian T. O’Neill; Michael Aaron Brodney; Christopher John Helal; Joseph M. Young; Erik LaChapelle; Subas M. Sakya; John C. Murray
A stereoselective synthesis of spiropiperidine compounds, exemplified by compound 1, was developed, which was based upon the late stage N-arylation of a 1,8-diazaspiro[4.5]dec-3-en-2-one pharmacophore. Previously, compound 1 was prepared in low overall yield from piperidinone 2 via the Strecker reaction. A new route was developed, which employed the stereospecific Corey-Link reaction of an enantiomerically pure trichloromethylcarbinol to give a template compound amenable to late stage N-arylation.
Bioorganic & Medicinal Chemistry Letters | 2002
Hengmiao Cheng; John P. Dirlam; Carl Bernard Ziegler; Kristin Marie Lundy; Shigeru F. Hayashi; Barbara J. Kamicker; Jason K. Dutra; Kirsten L. Daniel; Sheryl L. Santoro; David M. George; Camilla D. Bertsche; Subas M. Sakya; Melani Suarez-Contreras
3,6-Ketals of 15-membered azalide pseudoaglycones are a novel series of macrolide antibiotics. The aromatic derivatives of the azalide 3,6-ketals demonstrated potent antibacterial activities against both Gram-positive and Gram-negative bacteria.
ChemMedChem | 2017
Paramita Mukherjee; Martin Pettersson; Jason K. Dutra; Longfei Xie; Christopher W. am Ende
The synthesis of a new trifluoromethyl oxetane was developed using a Corey–Chaykovsky epoxidation/ring‐expansion reaction of trifluoromethyl ketones. The reaction was shown to proceed under mild conditions and displays a broad substrate scope. The trifluoromethyl oxetane was also evaluated as a tert‐butyl isostere in the context of the γ‐secretase modulator (GSM) program. We demonstrate that the trifluoromethyl oxetane‐containing GSM has decreased lipophilicity, improved lipophilic efficiency (LipE) and metabolic stability relative to the corresponding tert‐butyl GSM analogue, thus highlighting several benefits of trifluoromethyl oxetane as a more polar tert‐butyl isostere.
Journal of Medicinal Chemistry | 2018
Brian T. O’Neill; Elizabeth Mary Beck; Christopher Ryan Butler; Charles E. Nolan; Cathleen Gonzales; Lei Zhang; Shawn D. Doran; Kimberly Lapham; Leanne M. Buzon; Jason K. Dutra; Gabriela Barreiro; Xinjun Hou; Luis Martinez-Alsina; Bruce N. Rogers; Anabella Villalobos; John C. Murray; Kevin Ogilvie; Erik LaChapelle; Cheng Chang; Lorraine Lanyon; Claire M. Steppan; Ashley Robshaw; Katherine Hales; Germaine Boucher; Karamjeet Pandher; Christopher Houle; Claude Ambroise; David Karanian; David Riddell; Kelly R. Bales
A major challenge in the development of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimers disease is the alignment of potency, drug-like properties, and selectivity over related aspartyl proteases such as Cathepsin D (CatD) and BACE2. The potential liabilities of inhibiting BACE2 chronically have only recently begun to emerge as BACE2 impacts the processing of the premelanosome protein (PMEL17) and disrupts melanosome morphology resulting in a depigmentation phenotype. Herein, we describe the identification of clinical candidate PF-06751979 (64), which displays excellent brain penetration, potent in vivo efficacy, and broad selectivity over related aspartyl proteases including BACE2. Chronic dosing of 64 for up to 9 months in dog did not reveal any observation of hair coat color (pigmentation) changes and suggests a key differentiator over current BACE1 inhibitors that are nonselective against BACE2 in later stage clinical development.
Journal of Medicinal Chemistry | 2012
Antonia F. Stepan; Chakrapani Subramanyam; Ivan Viktorovich Efremov; Jason K. Dutra; Theresa J. O’Sullivan; Kenneth J. DiRico; W. Scott McDonald; Annie Won; Peter Hans Dorff; Charles E. Nolan; Stacey L. Becker; Leslie R. Pustilnik; David Riddell; Gregory W. Kauffman; Bethany L. Kormos; Liming Zhang; Yasong Lu; Steven Capetta; Michael Eric Green; Kapil Karki; Evelyn Sibley; Kevin Atchison; Andrew J. Hallgren; Christine E. Oborski; Ashley Robshaw; Blossom Sneed; Christopher J. O’Donnell
Archive | 2001
Hengmaio Cheng; Subas M. Sakya; Jason K. Dutra