Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason M. Rauceo is active.

Publication


Featured researches published by Jason M. Rauceo.


Microbiology and Molecular Biology Reviews | 2007

A Biochemical Guide to Yeast Adhesins: Glycoproteins for Social and Antisocial Occasions

Anne M. Dranginis; Jason M. Rauceo; Juan E. Coronado; Peter N. Lipke

SUMMARY Fungi are nonmotile eukaryotes that rely on their adhesins for selective interaction with the environment and with other fungal cells. Glycosylphosphatidylinositol (GPI)-cross-linked adhesins have essential roles in mating, colony morphology, host-pathogen interactions, and biofilm formation. We review the structure and binding properties of cell wall-bound adhesins of ascomycetous yeasts and relate them to their effects on cellular interactions, with particular emphasis on the agglutinins and flocculins of Saccharomyces and the Als proteins of Candida. These glycoproteins share common structural motifs tailored to surface activity and biological function. After being secreted to the outer face of the plasma membrane, they are covalently anchored in the wall through modified GPI anchors, with their binding domains elevated beyond the wall surface on highly glycosylated extended stalks. N-terminal globular domains bind peptide or sugar ligands, with between millimolar and nanomolar affinities. These affinities and the high density of adhesins and ligands at the cell surface determine microscopic and macroscopic characteristics of cell-cell associations. Central domains often include Thr-rich tandemly repeated sequences that are highly glycosylated. These domains potentiate cell-to-cell binding, but the molecular mechanism of such an association is not yet clear. These repeats also mediate recombination between repeats and between genes. The high levels of recombination and epigenetic regulation are sources of variation which enable the population to continually exploit new niches and resources.


Eukaryotic Cell | 2010

Yeast cell adhesion molecules have functional amyloid-forming sequences.

Caleen B. Ramsook; Cho Tan; Melissa C. Garcia; Raymond Fung; Gregory Soybelman; Ryan Henry; Anna Litewka; Shanique O'Meally; Henry Otoo; Roy A. Khalaf; Anne M. Dranginis; Nand K. Gaur; Stephen A. Klotz; Jason M. Rauceo; Chong K. Jue; Peter N. Lipke

ABSTRACT The occurrence of highly conserved amyloid-forming sequences in Candida albicans Als proteins (H. N. Otoo et al., Eukaryot. Cell 7:776–782, 2008) led us to search for similar sequences in other adhesins from C. albicans and Saccharomyces cerevisiae. The β-aggregation predictor TANGO found highly β-aggregation-prone sequences in almost all yeast adhesins. These sequences had an unusual amino acid composition: 77% of their residues were β-branched aliphatic amino acids Ile, Thr, and Val, which is more than 4-fold greater than their prevalence in the S. cerevisiae proteome. High β-aggregation potential peptides from S. cerevisiae Flo1p and C. albicans Eap1p rapidly formed insoluble amyloids, as determined by Congo red absorbance, thioflavin T fluorescence, and fiber morphology. As examples of the amyloid-forming ability of the native proteins, soluble glycosylphosphatidylinositol (GPI)-less fragments of C. albicans Als5p and S. cerevisiae Muc1p also formed amyloids within a few days under native conditions at nM concentrations. There was also evidence of amyloid formation in vivo: the surfaces of cells expressing wall-bound Als1p, Als5p, Muc1p, or Flo1p were birefringent and bound the fluorescent amyloid-reporting dye thioflavin T. Both of these properties increased upon aggregation of the cells. In addition, amyloid binding dyes strongly inhibited aggregation and flocculation. The results imply that amyloid formation is an intrinsic property of yeast cell adhesion proteins from many gene families and that amyloid formation is an important component of cellular aggregation mediated by these proteins.


Eukaryotic Cell | 2006

Threonine-Rich Repeats Increase Fibronectin Binding in the Candida albicans Adhesin Als5p

Jason M. Rauceo; Richard De Armond; Henry Otoo; Peter C. Kahn; Stephen A. Klotz; Nand K. Gaur; Peter N. Lipke

ABSTRACT Commensal and pathogenic states of Candida albicans depend on cell surface-expressed adhesins, including those of the Als family. Mature Als proteins consist of a 300-residue N-terminal region predicted to have an immunoglobulin (Ig)-like fold, a 104-residue conserved Thr-rich region (T), a central domain of a variable number of tandem repeats (TR) of a 36-residue Thr-rich sequence, and a heavily glycosylated C-terminal Ser/Thr-rich stalk region, also of variable length (N. K. Gaur and S. A. Klotz, Infect. Immun. 65: 5289-5294, 1997). Domain deletions in ALS5 were expressed in Saccharomyces cerevisiae to excrete soluble protein and for surface display. Far UV circular dichroism indicated that soluble Ig-T showed a single negative peak at 212 nm, consistent with previous data indicating that this region has high β-sheet content with very little α-helix. A truncation of Als5p with six tandem repeats (Ig-T-TR6) gave spectra with additional negative ellipticity at 200 nm and, at 227 to 240 nm, spectra characteristic of a structure with a similar fraction ofβ -sheet but with additional structural elements as well. Soluble Als5p Ig-T and Ig-T-TR6 fragments bound to fibronectin in vitro, but the inclusion of the TR region substantially increased affinity. Cellular adhesion assays with S. cerevisiae showed that the Ig-T domain mediated adherence to fibronectin and that TR repeats greatly increased cell-to-cell aggregation. Thus, the TR region of Als5p modulated the structure of the Ig-T region, augmented cell adhesion activity through increased binding to mammalian ligands, and simultaneously promoted fungal cell-cell interactions.


Infection and Immunity | 2004

Degenerate Peptide Recognition by Candida albicans Adhesins Als5p and Als1p

Stephen A. Klotz; Nand K. Gaur; Douglas F. Lake; Vincent Chan; Jason M. Rauceo; Peter N. Lipke

ABSTRACT Candida albicans and Saccharomyces cerevisiae expressing the adhesins Als5p or Als1p adhere to immobilized peptides and proteins that possess appropriate sequences of amino acids in addition to a sterically accessible peptide backbone. In an attempt to further define the nature of these targets, we surveyed the ability of yeast cells to adhere to 90-μm-diameter polyethylene glycol beads coated with a 7-mer peptide from a library of 197 unique peptide-beads. C. albicans bound to ca. 10% of beads from the library, whereas S. cerevisiae expressing Als5p or Als1p bound to ca. 0.1 to 1% of randomly selected peptide-beads. S. cerevisiae expressing Als1p had a distinctly different adherence phenotype than did cells expressing Als5p. The former adhered in groups or clumps of cells, whereas the latter adhered initially as single cells, an event which was followed by the build up of cell-cell aggregates. Beads with adherent cells were removed, and the peptide attached to the bead was determined by amino acid sequencing. All adhesive beads carried a three-amino-acid sequence motif (τφ+) that possessed a vast combinatorial potential. Adherence was sequence specific and was inhibited when soluble peptide identical to the immobilized peptide was added. The Als5p adhesin recognized some peptides that went unrecognized by Als1p. The sequence motif of adhesive peptides identified by this method is common in proteins and offers so many possible sequence combinations that target recognition by the Als proteins is clearly degenerate. A degenerate recognition system provides the fungi with the potential of adhering to a multitude of proteins and peptides, an advantage for any microorganism attempting to establish a commensal or pathogenic relationship with a host.


Infection and Immunity | 2004

Global cell surface conformational shift mediated by a Candida albicans adhesin

Jason M. Rauceo; Nand K. Gaur; Kyeng Gea Lee; John E. Edwards; Stephen A. Klotz; Peter N. Lipke

ABSTRACT Candida albicans maintains both commensal and pathogenic states in humans. Both states are dependent on cell surface-expressed adhesins, including those of the Als family. Heterologous expression of Als5p at the surface of Saccharomyces cerevisiae results in Als5p-mediated adhesion to various ligands, followed by formation of multicellular aggregates. Following adhesion of one region of the cell to fibronectin-coated beads, the entire surface of the cells became competent to mediate cell-cell aggregation. Aggregates formed in the presence of metabolic inhibitors or signal transduction inhibitors but were reduced in the presence of 8-anilino-1-naphthalene-sulfonic acid (ANS) or Congo Red (CR), perturbants that inhibit protein structural transitions. These perturbants also inhibited aggregation of C. albicans. An increase in ANS fluorescence, which accompanied Als-dependent cellular adhesion, indicated an increase in cell surface hydrophobicity. In addition, C. albicans and Als5p-expressing S. cerevisiae showed an aggregation-induced birefringence indicative of order on the cell surface. The increase in birefringence did not occur in the presence of the aggregation disruptants ANS and CR. These results suggest a model for Als5p-mediated aggregation in which an adhesion-triggered change in the conformation of Als5p propagates around the cell surface, forming ordered aggregation-competent regions.


Eukaryotic Cell | 2010

Structure and Function of Glycosylated Tandem Repeats from Candida albicans Als Adhesins

Aaron T. Frank; Caleen B. Ramsook; Henry Otoo; Cho Tan; Gregory Soybelman; Jason M. Rauceo; Nand K. Gaur; Stephen A. Klotz; Peter N. Lipke

ABSTRACT Tandem repeat (TR) regions are common in yeast adhesins, but their structures are unknown, and their activities are poorly understood. TR regions in Candida albicans Als proteins are conserved glycosylated 36-residue sequences with cell-cell aggregation activity (J. M. Rauceo, R. De Armond, H. Otoo, P. C. Kahn, S. A. Klotz, N. K. Gaur, and P. N. Lipke, Eukaryot. Cell 5:1664–1673, 2006). Ab initio modeling with either Rosetta or LINUS generated consistent structures of three-stranded antiparallel β-sheet domains, whereas randomly shuffled sequences with the same composition generated various structures with consistently higher energies. O- and N-glycosylation patterns showed that each TR domain had exposed hydrophobic surfaces surrounded by glycosylation sites. These structures are consistent with domain dimensions and stability measurements by atomic force microscopy (D. Alsteen, V. Dupres, S. A. Klotz, N. K. Gaur, P. N. Lipke, and Y. F. Dufrene, ACS Nano 3:1677–1682, 2009) and with circular dichroism determination of secondary structure and thermal stability. Functional assays showed that the hydrophobic surfaces of TR domains supported binding to polystyrene surfaces and other TR domains, leading to nonsaturable homophilic binding. The domain structures are like “classic” subunit interaction surfaces and can explain previously observed patterns of promiscuous interactions between TR domains in any Als proteins or between TR domains and surfaces of other proteins. Together, the modeling techniques and the supporting data lead to an approach that relates structure and function in many kinds of repeat domains in fungal adhesins.


Molecular Biology of the Cell | 2008

Regulation of the Candida albicans Cell Wall Damage Response by Transcription Factor Sko1 and PAS Kinase Psk1

Jason M. Rauceo; Jill R. Blankenship; Saranna Fanning; Jessica Hamaker; Jean Sebastien Deneault; Frank J. Smith; André Nantel; Aaron P. Mitchell

The environmental niche of each fungus places distinct functional demands on the cell wall. Hence cell wall regulatory pathways may be highly divergent. We have pursued this hypothesis through analysis of Candida albicans transcription factor mutants that are hypersensitive to caspofungin, an inhibitor of beta-1,3-glucan synthase. We report here that mutations in SKO1 cause this phenotype. C. albicans Sko1 undergoes Hog1-dependent phosphorylation after osmotic stress, like its Saccharomyces cerevisiae orthologues, thus arguing that this Hog1-Sko1 relationship is conserved. However, Sko1 has a distinct role in the response to cell wall inhibition because 1) sko1 mutants are much more sensitive to caspofungin than hog1 mutants; 2) Sko1 does not undergo detectable phosphorylation in response to caspofungin; 3) SKO1 transcript levels are induced by caspofungin in both wild-type and hog1 mutant strains; and 4) sko1 mutants are defective in expression of caspofungin-inducible genes that are not induced by osmotic stress. Upstream Sko1 regulators were identified from a panel of caspofungin-hypersensitive protein kinase-defective mutants. Our results show that protein kinase Psk1 is required for expression of SKO1 and of Sko1-dependent genes in response to caspofungin. Thus Psk1 and Sko1 lie in a newly described signal transduction pathway.


Fems Yeast Research | 2009

Widespread occurrence of chromosomal aneuploidy following the routine production of Candida albicans mutants

Mélanie Arbour; Elias Epp; Hervé Hogues; Adnane Sellam; Celine Lacroix; Jason M. Rauceo; Aaron P. Mitchell; Malcolm Whiteway; André Nantel

It has come to our attention that approximately 35% of >100 published microarray datasets, where transcript levels were compared between two different strains, exhibit some form of chromosome-specific bias. While some of these arose from the use of strains whose aneuploidies were not known at the time, in a worrisome number of cases the recombinant strains have acquired additional aneuploidies that were not initially present in the parental strain. The aneuploidies often affected a different chromosome than the one harboring the insertion site. The affected strains originated from either CAI-4, RM1000, BWP17 or SN95 and were produced through a variety of strategies. These observations suggest that aneuploidies frequently occur during the production of recombinant strains and have an effect on global transcript profiles outside of the afflicted chromosome(s), thus raising the possibility of unintended phenotypic consequences. Thus, we propose that all Candida albicans mutants and strains should be tested for aneuploidy before being used in further studies. To this end, we describe a new rapid testing method, based on a multiplex quantitative PCR assay, that produces eight bands of distinct sizes from either the left or right arms of each C. albicans chromosome.


Antimicrobial Agents and Chemotherapy | 2004

Inhibition of Adherence and Killing of Candida albicans with a 23-Mer Peptide (Fn/23) with Dual Antifungal Properties

Stephen A. Klotz; Nand K. Gaur; Jason M. Rauceo; Douglas F. Lake; Yoonkyung Park; K. S. Hahm; Peter N. Lipke

ABSTRACT Candida albicans adheres to host tissue and then proliferates in order to establish a commensal as well as a pathogenic state. Specific adherence to proteins is provided by several surface adhesins of Candida. Two well-studied proteins, Als1p and Als5p, do not require energy for adherence to occur (dead as well as living cells adhere) and have a multiplier effect of cell-cell aggregation that mediates the formation of microcolonies of Candida cells. The entire process is spontaneous, reversible, and stable for physiologically relevant chemical and physical forces. This adherence process is inhibited by the addition of free peptide ligands, including a 23-mer derived from fibronectin (Fn/23) that binds to the adhesins through H bond formation. Adherence was measured by determining the number of yeast cells that adhered to 90-μm-diameter polyethylene glycol (PEG) beads with a 7-mer peptide (KLRIPSV) synthesized on the surfaces of the beads. The concentration of the Fn/23 peptide that inhibited the adherence of cells to the peptide-coated beads by 50% was 4 to 5 μM, and the magnitudes of adherence were similar regardless of the presence or absence of physiologic salt concentrations. The minimum fungicidal concentration of Fn/23 was 2 to 4 μM in water, but there was no killing in physiologic salt concentrations. Peptides from the C and N termini or the center sequence of Fn/23 had no effect on inhibition of adherence and little effect on fungal viability. The fungicidal effect was similar to that seen with 23-, 19-, and 18-mer peptides derived from porcine myeloid cells, a Helicobacter pylori ribosomal protein, and a hybrid of cecropin and magainin, respectively. However, these fungicidal peptides did not inhibit C. albicans adherence to the peptide-coated PEG beads. This dual property of Fn/23, i.e., inhibition of adherence and killing of C. albicans, may provide important adjuvant effects in the treatment of disease caused by this fungus.


Yeast | 2010

A screen for deficiencies in GPI‐anchorage of wall glycoproteins in yeast

Marlyn Gonzalez; Noel L. Goddard; Charles Hicks; Rafael Ovalle; Jason M. Rauceo; Chong K. Jue; Peter N. Lipke

Many of the genes and enzymes critical for assembly and biogenesis of yeast cell walls remain unidentified or poorly characterized. Therefore, we designed a high throughput genomic screen for defects in anchoring of GPI‐cell wall proteins (GPI‐CWPs), based on quantification of a secreted GFP‐Sag1p fusion protein. Saccharomyces cerevisiae diploid deletion strains were transformed with a plasmid expressing the fusion protein under a GPD promoter, then GFP fluorescence was determined in culture supernatants after mid‐exponential growth. Variability in the amount of fluorescent marker secreted into the medium was reduced by growth at 18 °C in buffered defined medium in the presence of sorbitol. Secondary screens included immunoblotting for GFP, fluorescence emission spectra, cell surface fluorescence, and cell integrity. Of 167 mutants deleted for genes affecting cell wall biogenesis or structure, eight showed consistent hyper‐secretion of GFP relative to parental strain BY4743: tdh3 (glyceraldehyde‐3‐phosphate dehydrogenase), gda1 (guanosine diphosphatase), gpi13 and mcd4 (both ethanolamine phosphate‐GPI‐transferases), kre5 and kre1 (involved in synthesis of β1,6 glucan), dcw1(implicated in GPI‐CWP cross‐linking to cell wall glucan), and cwp1 (a major cell wall protein). In addition, deletion of a number of genes caused decreased secretion of GFP. These results elucidate specific roles for specific genes in cell wall biogenesis, including differentiating among paralogous genes. Copyright

Collaboration


Dive into the Jason M. Rauceo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Otoo

City University of New York

View shared research outputs
Top Co-Authors

Avatar

André Nantel

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Aaron P. Mitchell

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge