Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason M. Tomlinson is active.

Publication


Featured researches published by Jason M. Tomlinson.


Science | 2009

Evolution of Organic Aerosols in the Atmosphere

Jose L. Jimenez; Manjula R. Canagaratna; Neil M. Donahue; André S. H. Prévôt; Qi Zhang; Jesse H. Kroll; P. F. DeCarlo; J. D. Allan; Hugh Coe; Nga L. Ng; A. C. Aiken; Kenneth S. Docherty; Ingrid M. Ulbrich; Andrew P. Grieshop; Allen L. Robinson; Jonathan Duplissy; Jared D. Smith; Katherine Wilson; V. A. Lanz; C. Hueglin; Yele Sun; Jian Tian; Ari Laaksonen; T. Raatikainen; J. Rautiainen; Petri Vaattovaara; Mikael Ehn; Markku Kulmala; Jason M. Tomlinson; Don R. Collins

Framework for Change Organic aerosols make up 20 to 90% of the particulate mass of the troposphere and are important factors in both climate and human heath. However, their sources and removal pathways are very uncertain, and their atmospheric evolution is poorly characterized. Jimenez et al. (p. 1525; see the Perspective by Andreae) present an integrated framework of organic aerosol compositional evolution in the atmosphere, based on model results and field and laboratory data that simulate the dynamic aging behavior of organic aerosols. Particles become more oxidized, more hygroscopic, and less volatile with age, as they become oxygenated organic aerosols. These results should lead to better predictions of climate and air quality. Organic aerosols are not compositionally static, but they evolve dramatically within hours to days of their formation. Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high–time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.


Science | 2013

Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western U.S.

Jessie M. Creamean; Kaitlyn J. Suski; Daniel Rosenfeld; Alberto Cazorla; Paul J. DeMott; Ryan C. Sullivan; Allen B. White; F. Martin Ralph; Patrick Minnis; Jennifer M. Comstock; Jason M. Tomlinson; Kimberly A. Prather

Action at a Distance Snowfall in the Sierra Nevada provides a large fraction of the water that California receives as precipitation. Knowing what factors influence the amount of snow that falls is thus critical for projecting how water availability may change in the future. Aerosols have an important effect on cloud processes and precipitation. Creamean et al. (p. 1572, published online 28 February) found that dust and biological aerosols originating from as far away as the Sahara facilitate ice nuclei formation and ice-induced precipitation in the Sierra Nevada and show how dust and biological articles from places as distant as Africa and Asia can influence precipitation over the western United States. Dust and biological aerosols from the Sahara and Asia can act as ice nuclei for precipitation in California’s Sierra Nevada. Winter storms in California’s Sierra Nevada increase seasonal snowpack and provide critical water resources and hydropower for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation, whereas few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols probably serve as IN and play an important role in orographic precipitation processes over the western United States.


Bulletin of the American Meteorological Society | 2012

RACORO EXTENDED-TERM AIRCRAFT OBSERVATIONS OF BOUNDARY LAYER CLOUDS

Andrew M. Vogelmann; Greg M. McFarquhar; John A. Ogren; David D. Turner; Jennifer M. Comstock; Graham Feingold; Charles N. Long; Haflidi H. Jonsson; Anthony Bucholtz; Don R. Collins; Glenn S. Diskin; H. Gerber; R. Paul Lawson; Roy K. Woods; E. Andrews; Hee Jung Yang; J. Christine Chiu; Daniel Hartsock; John M. Hubbe; Chaomei Lo; Alexander Marshak; Justin W. Monroe; Sally A. McFarlane; Beat Schmid; Jason M. Tomlinson; Tami Toto

A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in situ statistical characterization of continental boundary layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGPs extensive complement of surface measurements provides ancillary data that support modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-...


Bulletin of the American Meteorological Society | 2017

The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

Scot T. Martin; Paulo Artaxo; Luiz A. T. Machado; Antonio O. Manzi; Rodrigo Augusto Ferreira de Souza; Courtney Schumacher; Jian Wang; Thiago Biscaro; Joel Brito; Alan J. P. Calheiros; K. Jardine; A. Medeiros; B. Portela; S. S. de Sá; Koichi Adachi; A. C. Aiken; Rachel I. Albrecht; L. M. Alexander; Meinrat O. Andreae; Henrique M. J. Barbosa; Peter R. Buseck; Duli Chand; Jennifer M. Comstock; Douglas A. Day; Manvendra K. Dubey; Jiwen Fan; Jerome D. Fast; Gilberto Fisch; Edward Charles Fortner; Scott E. Giangrande

AbstractThe Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed t...


Nature | 2016

Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

Jian Wang; Radovan Krejci; Scott E. Giangrande; Chongai Kuang; Henrique M. J. Barbosa; Joel Brito; Samara Carbone; Xuguang Chi; Jennifer M. Comstock; Florian Ditas; Jošt V. Lavrič; H. E. Manninen; Fan Mei; Daniel Moran-Zuloaga; Christopher Pöhlker; Mira L. Pöhlker; Jorge Saturno; Beat Schmid; Rodrigo Augusto Ferreira de Souza; Stephen R. Springston; Jason M. Tomlinson; Tami Toto; David Walter; Daniela Wimmer; James N. Smith; Markku Kulmala; Luiz A. T. Machado; Paulo Artaxo; Meinrat O. Andreae; Tuukka Petäjä

The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.


Environmental Science & Technology | 2013

Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer.

J. Brian Leen; Xiao-Ying Yu; Manish Gupta; Douglas S. Baer; John M. Hubbe; Celine D. Kluzek; Jason M. Tomlinson; Mike R. Hubbell

A new ammonia (NH3) analyzer was developed based on off-axis integrated cavity output spectroscopy. Its feasibility was demonstrated by making tropospheric measurements in flights aboard the Department of Energy Gulfstream-1 aircraft. The ammonia analyzer consists of an optical cell, quantum-cascade laser, gas sampling system, control and data acquisition electronics, and analysis software. The NH3 mixing ratio is determined from high-resolution absorption spectra obtained by tuning the laser wavelength over the NH3 fundamental vibration band near 9.67 μm. Excellent linearity is obtained over a wide dynamic range (0-101 ppbv) with a response rate (1/e) of 2 Hz and a precision of ±90 pptv (1σ in 1 s). Two research flights were conducted over the Yakima Valley in Washington State. In the first flight, the ammonia analyzer was used to identify signatures of livestock from local dairy farms with high vertical and spatial resolution under low wind and calm atmospheric conditions. In the second flight, the analyzer captured livestock emission signals under windy conditions. Our results demonstrate that this new ammonia spectrometer is capable of providing fast, precise, and accurate in situ observations of ammonia aboard airborne platforms to advance our understanding of atmospheric compositions and aerosol formation.


Bulletin of the American Meteorological Society | 2014

The DOE ARM Aerial Facility

Beat Schmid; Jason M. Tomlinson; John M. Hubbe; Jennifer M. Comstock; Fan Mei; Duli Chand; Mikhail S. Pekour; Celine D. Kluzek; E. Andrews; S. Biraud; Greg M. McFarquhar

The Department of Energy Atmospheric Radiation Measurement (ARM) program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate-relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6–12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using surface-or satellite-based techniques. Several ARM aerial efforts were consolidated to form AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. AAF successfully carried out several missions contracting with organizations and investigators who provided their research airc...


Journal of Geophysical Research | 2016

The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

Larry K. Berg; Jerome D. Fast; James C. Barnard; Sharon Burton; Brian Cairns; Duli Chand; Jennifer M. Comstock; Stephen E. Dunagan; Richard A. Ferrare; Connor J. Flynn; Johnathan W. Hair; Chris A. Hostetler; John M. Hubbe; Anne Jefferson; Roy R. Johnson; Evgueni I. Kassianov; Celine D. Kluzek; Pavlos Kollias; Katia Lamer; Kathleen Lantz; Fan Mei; Mark A. Miller; Joseph Michalsky; Ivan Ortega; Mikhail S. Pekour; Ray Rogers; Philip B. Russell; J. Redemann; Arthur J. Sedlacek; Michal Segal-Rosenheimer

The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energys (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.


Bulletin of the American Meteorological Society | 2011

Airborne Intrumentation Needs for Climate and Atmospheric Research

Greg M. McFarquhar; Beat Schmid; Alexei Korolev; John A. Ogren; Philip B. Russell; Jason M. Tomlinson; David D. Turner; Warren J. Wiscombe

Observational data are of fundamental importance for advances in climate and atmospheric research. Advances in atmospheric science are being made not only through the use of ground-based and space-based observations, but also through the use of in-situ and remote sensing observations acquired on instrumented aircraft. In order for us to enhance our knowledge of atmospheric processes, it is imperative that efforts be made to improve our understanding of the operating characteristics of current instrumentation and of the caveats and uncertainties in data acquired by current probes, as well as to develop improved observing methodologies for acquisition of airborne data.


Aerosol Science and Technology | 2013

Development of a New Airborne Humidigraph System

Mikhail S. Pekour; Beat Schmid; Duli Chand; John M. Hubbe; Celine D. Kluzek; Danny A. Nelson; Jason M. Tomlinson; Daniel J. Cziczo

The hygroscopic behavior of atmospheric aerosols complicates modeling and measurements of aerosol properties adding significant uncertainty to our best estimates of the direct effect aerosols exert on the radiative balance of the atmosphere. Airborne measurements of aerosol hygroscopicity are particularly challenging but critically needed. This motivated the development of a new system designed to measure the dependence of the aerosol light scattering coefficient (σ sp) on relative humidity (RH), known as f(RH), in real-time on an aerial platform. The new instrument has several advantages over existing systems. It consists of three integrating nephelometers and humidity conditioners for simultaneous measurement of the σ sp at three different RHs. The humidity is directly controlled in exchanger cells without significant temperature disturbances and without particle dilution, heating, or loss of volatile compounds. The single-wavelength nephelometers are illuminated by LED-based light sources thereby minimizing heating of the sample stream. The flexible design of the RH conditioners, consisting of a number of specially designed exchanger cells (driers or humidifiers), enables us to measure f(RH) under hydration or dehydration conditions (always starting with the aerosol in a known state) with a simple system reconfiguration. These exchanger cells have been characterized for losses of particles using latex spheres and laboratory generated ammonium sulfate aerosols. The performance of this instrument has been assessed aboard DOEs G-1 research aircraft during test flights over California, Oregon, and Washington. Copyright 2013 American Association for Aerosol Research

Collaboration


Dive into the Jason M. Tomlinson's collaboration.

Top Co-Authors

Avatar

Jennifer M. Comstock

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Beat Schmid

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John M. Hubbe

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mikhail S. Pekour

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Fan Mei

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jerome D. Fast

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Arthur J. Sedlacek

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John E. Shilling

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Larry K. Berg

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge