Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John M. Hubbe is active.

Publication


Featured researches published by John M. Hubbe.


Nature | 1998

Unexpectedly high concentrations of molecular chlorine in coastal air

Chester W. Spicer; Elaine G. Chapman; Barbara J. Finlayson-Pitts; Robert A. Plastridge; John M. Hubbe; Jerome D. Fast; Carl M. Berkowitz

The fate of many atmospheric trace species, including pollutants such as nitrogen oxides and some volatile organic compounds, is controlled by oxidation reactions. In the daytime troposphere, these reactions are dominated by photochemically produced OH radicals; at night and in polluted environments, NO3 radicals are an important oxidant. Ozone can contribute to the oxidation of atmospheric species during both day and night. In recent years, laboratory investigations, modelling studies, measured Cl deficits in marine aerosols and species-nonspecific observations of gaseous inorganic chlorine compounds other than HCl have suggested that reactive halogen species may contribute significantly to—or even locally dominate—the oxidative capacity of the lower marine troposphere. Here we report night-time observations of molecular chlorine concentrations at a North American coastal site during onshore wind flow conditions that cannot be explained using known chlorine chemistry. The measured Cl2 mixing ratios range from <10 to 150 parts per 1012 (p.p.t.), exceeding those predicted for marine air by more than an order of magnitude. Using the observed chlorine concentrations and a simple photochemical box model, we estimate that a hitherto unrecognized chlorine source must exist that produces up to 330 p.p.t. Cl2 per day. The model also indicates that early-morning photolysis of molecular chlorine can yield sufficiently high concentrations of chlorine atoms to render the oxidation of common gaseous compounds by this species 100 times faster than the analogous oxidation reactions involving the OH radical, thus emphasizing the locally significant effect of chlorine atoms on the concentrations and lifetimes of atmospheric trace species in both the remote marine boundary layer and coastal urban areas.


Journal of The Air & Waste Management Association | 1999

Particulate Air Pollution in Mexico City: A Collaborative Research Project

Sylvia A. Edgerton; Xindi Bian; J. C. Doran; Jerome D. Fast; John M. Hubbe; E. L. Malone; William J. Shaw; C. D. Whiteman; Shiyuan Zhong; J. L. Arriaga; E. Ortiz; Ma. Esther Ruiz; G. Sosa; Elizabeth Vega; T. Limón; F. Guzman; John A. Archuleta; J. E. Bossert; S. M. Elliot; J. T. Lee; Laurie A. McNair; Judith C. Chow; John G. Watson; Richard L. Coulter; Jeffrey S. Gaffney; Nancy A. Marley; William D. Neff; R. Petty

PM10, PM25, precursor gas, and upper-air meteorological measurements were taken in Mexico City, Mexico, from February 23 to March 22, 1997, to understand concentrations and chemical compositions of the citys particulate matter (PM). Average 24-hr PM10 concentrations over the period of study at the core sites in the city were 75 H g/m3. The 24-hr standard of 150 μ g/m3 was exceeded for seven samples taken during the study period; the maximum 24-hr concentration measured was 542 μ g/m3. Nearly half of the PM10 was composed of fugitive dust from roadways, construction, and bare land. About 50% of the PM10 consisted of PM2.5, with higher percentages during the morning hours. Organic and black carbon constituted up to half of the PM2.5. PM concentrations were highest during the early morning and after sunset, when the mixed layers were shallow. Meteorological measurements taken during the field campaign show that on most days air was transported out of the Mexico City basin during the afternoon with little day-to-day carryover.


Weather and Forecasting | 2001

Cold Pools in the Columbia Basin

C. D. Whiteman; Shiyuan Zhong; William J. Shaw; John M. Hubbe; Xindi Bian; J. Mittelstadt

Persistent midwinter cold air pools produce multiday periods of cold, dreary weather in basins and valleys. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures below freezing while the air above is warmer, freezing precipitation often occurs, with consequent effects on transportation and safety. Forecasting the buildup and breakdown of these cold pools is difficult because the interacting physical mechanisms leading to their formation, maintenance, and destruction have received little study. In this paper, persistent wintertime cold pools in the Columbia River basin of eastern Washington are studied. First a succinct meteorological definition of a cold pool is provided and then a 10-yr database is used to develop a cold pool climatology. This is followed by a detailed examination of two cold pool episodes that were accompanied by fog and stratus using remote and in situ temperature and wind sounding data. The two episodes illustrate many of the physical mechanisms that affect cold pool evolution. In one case, the cold pool was formed by warm air advection above the basin and was destroyed by downslope winds that descended into the southern edge of the basin and progressively displaced the cold air in the basin. In the second case, the cold pool began with a basin temperature inversion on a clear night and strengthened when warm air was advected above the basin by a westerly flow that descended from the Cascade Mountains. The cold pool was nearly destroyed one afternoon by cold air advection aloft and by the growth of a convective boundary layer (CBL) following the partial breakup of the basin stratus. The cold pool restrengthened, however, with nighttime cooling and was destroyed the next afternoon by a growing CBL.


Bulletin of the American Meteorological Society | 1998

The IMADA-AVER Boundary Layer Experiment in the Mexico City Area

J. C. Doran; Scott Abbott; John A. Archuleta; Xindi Bian; Judith C. Chow; Richard L. Coulter; S. F. J. de Wekker; S. Edgerton; S. Elliott; A. Fernandez; Jerome D. Fast; John M. Hubbe; C. W. King; D. Langley; J. Leach; J. T. Lee; Timothy Martin; D. Martinez; J. L. Martinez; G. Mercado; V. Mora; M. Mulhearn; J. L. Pena; R. Petty; W. Porch; C. C. Russell; R. Salas; J.D. Shannon; William J. Shaw; G. Sosa

Abstract A boundary layer field experiment in the Mexico City basin during the period 24 February–22 March 1997 is described. A total of six sites were instrumented. At four of the sites, 915-MHz radar wind profilers were deployed and radiosondes were released five times per day. Two of these sites also had sodars collocated with the profilers. Radiosondes were released twice per day at a fifth site to the south of the basin, and rawinsondes were flown from another location to the northeast of the city three times per day. Mixed layers grew to depths of 2500–3500 m, with a rapid period of growth beginning shortly before noon and lasting for several hours. Significant differences between the mixed-layer temperatures in the basin and outside the basin were observed. Three thermally and topographically driven flow patterns were observed that are consistent with previously hypothesized topographical and thermal forcing mechanisms. Despite these features, the circulation patterns in the basin important for the...


Journal of Atmospheric and Oceanic Technology | 2000

Evaluation of an Inexpensive Temperature Datalogger for Meteorological Applications

C. D. Whiteman; John M. Hubbe; William J. Shaw

Recent advances in electronics miniaturization have allowed the commercial development of sensor/datalogger combinations that are sufficiently inexpensive and appear to be sufficiently accurate to deploy in measurement arrays to resolve local atmospheric structure over periods of weeks to months. As part of an extended wintertime field experiment in the Columbia Basin of south-central Washington, laboratory and field tests were performed on one such set of battery-powered temperature dataloggers (HOBO H8 Pro from Onset Computer, Bourne, Massachusetts). Five loggers were selected for laboratory calibration. These were accurate to within 0.26 8C over the range from 258 to 1508C with a resolution of 0.048C or better. Sensor time constants were 122 6 6s . Sampling intervals can be varied over a wide range, with onboard data storage of more than 21 000 data points. Field experiences with a set of 15 dataloggers are also described. The loggers appear to be suitable for a variety of meteorological applications.


Bulletin of the American Meteorological Society | 2012

RACORO EXTENDED-TERM AIRCRAFT OBSERVATIONS OF BOUNDARY LAYER CLOUDS

Andrew M. Vogelmann; Greg M. McFarquhar; John A. Ogren; David D. Turner; Jennifer M. Comstock; Graham Feingold; Charles N. Long; Haflidi H. Jonsson; Anthony Bucholtz; Don R. Collins; Glenn S. Diskin; H. Gerber; R. Paul Lawson; Roy K. Woods; E. Andrews; Hee Jung Yang; J. Christine Chiu; Daniel Hartsock; John M. Hubbe; Chaomei Lo; Alexander Marshak; Justin W. Monroe; Sally A. McFarlane; Beat Schmid; Jason M. Tomlinson; Tami Toto

A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in situ statistical characterization of continental boundary layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGPs extensive complement of surface measurements provides ancillary data that support modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-...


Monthly Weather Review | 2001

Meteorological Processes Affecting the Evolution of a Wintertime Cold Air Pool in the Columbia Basin

Shiyuan Zhong; C. David Whiteman; Xindi Bian; William J. Shaw; John M. Hubbe

Meteorological mechanisms affecting the evolution of a persistent wintertime cold air pool that began on 2 January and ended on 7 January 1999 in the Columbia basin of eastern Washington were investigated using a mesoscale numerical model together with limited observations. The mechanisms include surface radiative cooling and heating, large-scale subsidence, temperature advection, downslope warming in the lee of a major mountain barrier, and low-level cloudiness. The cold pool began when cold air accumulated over the basin floor on a clear night and was maintained by a strong capping inversion resulting from a rapid increase of air temperatures above the cold pool. This increase of temperatures aloft was produced primarily by downslope warming associated with strong westerly winds descending the lee slopes of the north‐south-oriented Cascade Mountains that form the western boundary of the Columbia basin. While the inversion cap at the top of the cold pool descended with time as the westerly flow intensified, the air temperature inside the cold pool exhibited little variation because of the fog and stratus accompanying the cold pool. Although the low-level clouds reduced the diurnal temperature oscillations inside the pool, their existence was not critical to maintaining the cold pool because surface radiative heating on a midwinter day was insufficient to completely destroy the temperature deficit in the persistent inversion. The presence of low-level clouds becomes much more critical for the maintenance of persistent cold pools in the spring and, perhaps, the fall seasons when insolation is much stronger than in midwinter. The cold pool was destroyed by cold air advection aloft, which weakened and eventually removed the strong inversion cap, and by an unstable boundary layer that grew upward from the heated ground after the dissipation of low-level clouds. Finally, erosion of the cold pool from above by turbulent mixing produced by vertical wind shear at the interface between quiescent air within the pool and stronger winds aloft was found to be insignificant for this case.


Bulletin of the American Meteorological Society | 2017

The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

Scot T. Martin; Paulo Artaxo; Luiz A. T. Machado; Antonio O. Manzi; Rodrigo Augusto Ferreira de Souza; Courtney Schumacher; Jian Wang; Thiago Biscaro; Joel Brito; Alan J. P. Calheiros; K. Jardine; A. Medeiros; B. Portela; S. S. de Sá; Koichi Adachi; A. C. Aiken; Rachel I. Albrecht; L. M. Alexander; Meinrat O. Andreae; Henrique M. J. Barbosa; Peter R. Buseck; Duli Chand; Jennifer M. Comstock; Douglas A. Day; Manvendra K. Dubey; Jiwen Fan; Jerome D. Fast; Gilberto Fisch; Edward Charles Fortner; Scott E. Giangrande

AbstractThe Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed t...


Bulletin of the American Meteorological Society | 2009

Overview of the Cumulus Humilis Aerosol Processing Study.

Larry K. Berg; Carl M. Berkowitz; John A. Ogren; Chris A. Hostetler; Richard A. Ferrare; Manvendra K. Dubey; E. Andrews; Richard L. Coulter; Johnathan W. Hair; John M. Hubbe; Yin-Nan Lee; Claudio Mazzoleni; Jason S. Olfert; Stephen R. Springston

Abstract The primary goal of the Cumulus Humilis Aerosol Processing Study (CHAPS) was to characterize and contrast freshly emitted aerosols below, within, and above fields of cumuli, and to study changes to the cloud microphysical structure within these same cloud fields in the vicinity of Oklahoma City during June 2007. CHAPS is one of few studies that have had an aerosol mass spectrometer (AMS) sampling downstream of a counterflow virtual impactor (CVI) inlet on an aircraft, allowing the examination of the chemical composition of activated aerosols within the cumuli. The results from CHAPS provide insights into changes in the aerosol chemical and optical properties as aerosols move through shallow cumuli downwind of a moderately sized city. Three instrument platforms were employed during CHAPS, including the U.S. Department of Energy Gulfstream-1 aircraft, which was equipped for in situ sampling of aerosol optical and chemical properties; the NASA Langley King Air B200, which carried the downward-lookin...


Journal of Applied Meteorology | 1997

Observations of Spatial Variations of Boundary Layer Structure over the Southern Great Plains Cloud and Radiation Testbed

John M. Hubbe; J. C. Doran; J. C. Liljegren; William J. Shaw

Abstract Results from a field campaign to study the response of the planetary boundary layer to spatially varying surface conditions are presented. Radiosondes released at four locations with contrasting land use characteristics in the U.S. Department of Energy’s Cloud and Radiation Testbed (CART) in Kansas and Oklahoma showed significant variations in mixed-layer depth, temperature, and water vapor mixing ratios over distances of 100–200 km. Using CART and radiosonde data, estimates of the surface sensible and latent heat fluxes are derived; the results from several methods are compared and a discussion of the similarities and differences in the values is given. Although substantial flux differences among the sites account for some of the variations in the boundary layer behavior, other features of the ambient meteorology and initial conditions appear to be equally important. Despite large changes in mixed-layer and surface-layer temperatures over scales of approximately 100 km, no evidence for temperatu...

Collaboration


Dive into the John M. Hubbe's collaboration.

Top Co-Authors

Avatar

Stephen R. Springston

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yin-Nan Lee

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John T. Jayne

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Carl M. Berkowitz

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jerome D. Fast

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Larry K. Berg

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lawrence I. Kleinman

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Beat Schmid

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter H. Daum

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rahul A. Zaveri

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge