Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason N. Cole is active.

Publication


Featured researches published by Jason N. Cole.


Nature Medicine | 2007

DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection.

Mark J. Walker; Andrew Hollands; Martina L. Sanderson-Smith; Jason N. Cole; Joshua K. Kirk; Anna Henningham; Jason D. McArthur; Katrin Dinkla; Ramy K. Aziz; Rita Kansal; Amelia Simpson; John T. Buchanan; Gursharan S. Chhatwal; Malak Kotb; Victor Nizet

Most invasive bacterial infections are caused by species that more commonly colonize the human host with minimal symptoms. Although phenotypic or genetic correlates underlying a bacteriums shift to enhanced virulence have been studied, the in vivo selection pressures governing such shifts are poorly understood. The globally disseminated M1T1 clone of group A Streptococcus (GAS) is linked with the rare but life-threatening syndromes of necrotizing fasciitis and toxic shock syndrome. Mutations in the GAS control of virulence regulatory sensor kinase (covRS) operon are associated with severe invasive disease, abolishing expression of a broad-spectrum cysteine protease (SpeB) and allowing the recruitment and activation of host plasminogen on the bacterial surface. Here we describe how bacteriophage-encoded GAS DNase (Sda1), which facilitates the pathogens escape from neutrophil extracellular traps, serves as a selective force for covRS mutation. The results provide a paradigm whereby natural selection exerted by the innate immune system generates hypervirulent bacterial variants with increased risk of systemic dissemination.


Nature Reviews Microbiology | 2011

Molecular insight into invasive group A streptococcal disease

Jason N. Cole; Timothy C. Barnett; Victor Nizet; Mark J. Walker

Streptococcus pyogenes is also known as group A Streptococcus (GAS) and is an important human pathogen that causes considerable morbidity and mortality worldwide. The GAS serotype M1T1 clone is the most frequently isolated serotype from life-threatening invasive (at a sterile site) infections, such as streptococcal toxic shock-like syndrome and necrotizing fasciitis. Here, we describe the virulence factors and newly discovered molecular events that mediate the in vivo changes from non-invasive GAS serotype M1T1 to the invasive phenotype, and review the invasive-disease trigger for non-M1 GAS. Understanding the molecular basis and mechanism of initiation for streptococcal invasive disease may expedite the discovery of novel therapeutic targets for the treatment and control of severe invasive GAS diseases.


Clinical Microbiology Reviews | 2014

Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus

Mark J. Walker; Timothy C. Barnett; Jason D. McArthur; Jason N. Cole; Christine M. Gillen; Anna Henningham; Kadaba S. Sriprakash; Martina L. Sanderson-Smith; Victor Nizet

SUMMARY Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.


The FASEB Journal | 2006

Trigger for group A streptococcal M1T1 invasive disease

Jason N. Cole; Jason D. McArthur; Fiona C. McKay; Martina L. Sanderson-Smith; Amanda J. Cork; Marie Ranson; Manfred Rohde; Andreas Itzek; Hongmin Sun; David Ginsburg; Malak Kotb; Victor Nizet; Gursharan S. Chhatwal; Mark J. Walker

The globally disseminated Streptococcus pyogenes M1T1 clone causes a number of highly invasive human diseases. The transition from local to systemic infection occurs by an unknown mechanism; however invasive M1T1 clinical isolates are known to express significantly less cysteine protease SpeB than M1T1 isolates from local infections. Here, we show that in comparison to the M1T1 strain 5448, the isogenic mutant ΔspeB accumulated 75‐fold more human plasmin activity on the bacterial surface following incubation in human plasma. Human plasminogen was an absolute requirement for M1T1 strain 5448 virulence following subcutaneous (s.c.) infection of humanized plasminogen transgenic mice. S. pyogenes M1T1 isolates from the blood of infected humanized plasminogen transgenic mice expressed reduced levels of SpeB in comparison with the parental 5448 used as inoculum. We propose that the human plasminogen system plays a critical role in group A streptococcal M1T1 systemic disease initiation. SpeB is required for S. pyogenes M1T1 survival at the site of local infection, however, SpeB also disrupts the interaction of S. pyogenes M1T1 with the human plasminogen activation system. Loss of SpeB activity in a subpopulation of S. pyogenes M1T1 at the site of infection results in accumulation of surface plasmin activity thus triggering systemic spread.—Cole, J. N., McArthur, J. D., McKay, F. C., Sanderson‐Smith, M. L., Cork, A. J., Ranson, M., Rohde, M., Itzek, A., Sun, H., Ginsburg, D., Kotb, M., Nizet, V., Chhatwal, G. S., Walker, M. J. Trigger for group A streptococcal M1T1 invasive disease. FASEB J. 20, E1139–E1145 (2006)


Infection and Immunity | 2005

Surface Analyses and Immune Reactivities of Major Cell Wall-Associated Proteins of Group A Streptococcus

Jason N. Cole; Ruben D. Ramirez; Bart J. Currie; Stuart J. Cordwell; Steven P. Djordjevic; Mark J. Walker

ABSTRACT A proteomic analysis was undertaken to identify cell wall-associated proteins of Streptococcus pyogenes. Seventy-four distinct cell wall-associated proteins were identified, 66 of which were novel. Thirty-three proteins were immunoreactive with pooled S. pyogenes-reactive human antisera. Biotinylation of the GAS cell surface identified 23 cell wall-associated proteins that are surface exposed.


Mbio | 2010

M Protein and Hyaluronic Acid Capsule Are Essential for In Vivo Selection of covRS Mutations Characteristic of Invasive Serotype M1T1 Group A Streptococcus

Jason N. Cole; Morgan A. Pence; Maren von Köckritz-Blickwede; Andrew Hollands; Richard L. Gallo; Mark J. Walker; Victor Nizeta

ABSTRACT The initiation of hyperinvasive disease in group A Streptococcus (GAS) serotype M1T1 occurs by mutation within the covRS two-component regulon (named covRS for control of virulence regulatory sensor kinase), which promotes resistance to neutrophil-mediated killing through the upregulation of bacteriophage-encoded Sda1 DNase. To determine whether other virulence factors contribute to this phase-switching phenomenon, we studied a panel of 10 isogenic GAS serotype M1T1 virulence gene knockout mutants. While loss of several individual virulence factors did not prevent GAS covRS switching in vivo, we found that M1 protein and hyaluronic acid capsule are indispensable for the switching phenotype, a phenomenon previously attributed uniquely to the Sda1 DNase. We demonstrate that like M1 protein and Sda1, capsule expression enhances survival of GAS serotype M1T1 within neutrophil extracellular traps. Furthermore, capsule shares with M1 protein a role in GAS resistance to human cathelicidin antimicrobial peptide LL-37. We conclude that a quorum of GAS serotype M1T1 virulence genes with cooperative roles in resistance to neutrophil extracellular killing is essential for the switch to a hyperinvasive phenotype in vivo. IMPORTANCE The pathogen group A Streptococcus (GAS) causes a wide range of human infections ranging from the superficial “strep throat” to potentially life-threatening conditions, such as necrotizing fasciitis, also known as “flesh-eating disease.” A marked increase in the number of cases of severe invasive GAS infection during the last 30 years has been traced to the emergence and spread of a single clone of the M1T1 serotype. Recent studies have shown that GAS serotype M1T1 bacteria undergo a genetic “switch” in vivo to a hypervirulent state that allows dissemination into the bloodstream. The present study was undertaken to identify specific GAS serotype M1T1 virulence factors required for this switch to hypervirulence. The surface-anchored GAS M1 protein and hyaluronic acid capsule are found to be essential for the switching phenotype, and a novel role for capsule in GAS resistance to host defense peptides and neutrophil extracellular killing is revealed. The pathogen group A Streptococcus (GAS) causes a wide range of human infections ranging from the superficial “strep throat” to potentially life-threatening conditions, such as necrotizing fasciitis, also known as “flesh-eating disease.” A marked increase in the number of cases of severe invasive GAS infection during the last 30 years has been traced to the emergence and spread of a single clone of the M1T1 serotype. Recent studies have shown that GAS serotype M1T1 bacteria undergo a genetic “switch” in vivo to a hypervirulent state that allows dissemination into the bloodstream. The present study was undertaken to identify specific GAS serotype M1T1 virulence factors required for this switch to hypervirulence. The surface-anchored GAS M1 protein and hyaluronic acid capsule are found to be essential for the switching phenotype, and a novel role for capsule in GAS resistance to host defense peptides and neutrophil extracellular killing is revealed.


The FASEB Journal | 2008

M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate

Martina L. Sanderson-Smith; Katrin Dinkla; Jason N. Cole; Amanda J. Cork; P. G. Maamary; Jason D. McArthur; Gursharan S. Chhatwal; Mark J. Walker

The human protease plasmin plays a crucial role in the capacity of the group A streptococcus (GAS; Streptococus pyogenes) to initiate invasive disease. The GAS strain NS88.2 was isolated from a case of bacteremia from the Northern Territory of Australia, a region with high rates of GAS invasive disease. Mutagenesis of the NS88.2 plasminogen binding M protein Prp was undertaken to examine the contribution of plasminogen binding and cell surface plasmin acquisition to virulence. The isogenic mutant NS88.2prp was engineered whereby four amino acid residues critical for plasminogen binding were converted to alanine codons in the GAS genome sequence. The mutated residues were reverse complemented to the wild‐type sequence to construct GAS strain NS88.2prpRC. In comparison to NS88.2 and NS88.2prpRC, the NS88.2prp mutant exhibited significantly reduced ability to bind human plasminogen and accumulate cell surface plasmin activity during growth in human plasma. Utilizing a humanized plasminogen mouse model of invasive infection, we demonstrate that the capacity to bind plasminogen and accumulate surface plasmin activity plays an essential role in GAS virulence.—Sanderson‐Smith, M. L., Dinkla, K., Cole, J. N., Cork, A. J., Maamary, P. G., McArthur, J. D., Chhatwal, G. S., Walker, M. J. M protein‐mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J. 22, 2715–2722 (2008)


Nature | 2011

Streptococcal M1 protein constructs a pathological host fibrinogen network

Pauline Macheboeuf; Cosmo Z. Buffalo; Chi-yu Fu; Annelies S. Zinkernagel; Jason N. Cole; John E. Johnson; Victor Nizet; Partho Ghosh

M1 protein, a major virulence factor of the leading invasive strain of group A Streptococcus, is sufficient to induce toxic-shock-like vascular leakage and tissue injury. These events are triggered by the formation of a complex between M1 and fibrinogen that, unlike M1 or fibrinogen alone, leads to neutrophil activation. Here we provide a structural explanation for the pathological properties of the complex formed between streptococcal M1 and human fibrinogen. A conformationally dynamic coiled-coil dimer of M1 was found to organize four fibrinogen molecules into a specific cross-like pattern. This pattern supported the construction of a supramolecular network that was required for neutrophil activation but was distinct from a fibrin clot. Disruption of this network into other supramolecular assemblies was not tolerated. These results have bearing on the pathophysiology of streptococcal toxic shock.


The FASEB Journal | 2008

Allelic variants of streptokinase from Streptococcus pyogenes display functional differences in plasminogen activation

Jason D. McArthur; Fiona C. McKay; Priya Shyam; Amanda J. Cork; Martina L. Sanderson-Smith; Jason N. Cole; Ulrika Ringdahl; Ulf Sjöbring; Marie Ranson; Mark J. Walker

A common mammalian defense mechanism employed to prevent systemic dissemination of invasive bacteria involves occlusion of local microvasculature and encapsulation of bacteria within fibrin networks. Acquisition of plasmin activity at the bacterial cell surface circumvents this defense mechanism, allowing invasive disease initiation. To facilitate this process, S. pyogenes secretes streptokinase, a plasminogen‐activating protein. Streptokinase polymorphism exhibited by S. pyogenes isolates is well characterized. However, the functional differences displayed by these variants and the biological significance of this variation has not been elucidated. Phylogenetic analysis of ska sequences from 28 S. pyogenes isolates revealed 2 main sequence clusters (clusters 1 and 2). All strains secreted streptokinase, as determined by Western blotting, and were capable of acquiring cell surface plasmin activity after incubation in human plasma. Whereas culture supernatants from strains containing cluster 1 ska alleles also displayed soluble plasminogen activation activity, supernatants from strains containing cluster 2 ska alleles did not. Furthermore, plasminogen activation activity in culture supernatants from strains containing cluster 2 ska alleles could only be detected when plasminogen was prebound with fibrinogen. This study indicates that variant streptokinase proteins secreted by S. pyogenes isolates display differing plasminogen activation characteristics and may therefore play distinct roles in disease pathogenesis.—McArthur, J. D., McKay, F. C., Ramachandran, V., Shyam, P., Cork, A. J., Sanderson‐Smith, M. L., Cole, J. N., Ringdahl, U., Sjöbring, U., Ranson, M., Walker, M. J. Allelic variants of streptokinase from Streptococcus pyogenes display functional differences in plasminogen activation. FASEB J. 22, 3146–3153 (2008)


The FASEB Journal | 2012

Tracing the evolutionary history of the pandemic group A streptococcal M1T1 clone

Peter G. Maamary; Nouri L. Ben Zakour; Jason N. Cole; Andrew Hollands; Ramy K. Aziz; Timothy C. Barnett; Amanda J. Cork; Anna Henningham; Martina L. Sanderson-Smith; Jason D. McArthur; Carola Venturini; Christine M. Gillen; Joshua K. Kirk; Dwight R. Johnson; William L. Taylor; Edward L. Kaplan; Malak Kotb; Victor Nizet; Scott A. Beatson; Mark J. Walker

The past 50 years has witnessed the emergence of new viral and bacterial pathogens with global effect on human health. The hyperinvasive group A Streptococcus (GAS) M1T1 clone, first detected in the mid‐1980s in the United States, has since disseminated worldwide and remains a major cause of severe invasive human infections. Although much is understood regarding the capacity of this pathogen to cause disease, much less is known of the precise evolutionary events selecting for its emergence. We used high‐throughput technologies to sequence a World Health Organization strain collection of serotype M1 GAS and reconstructed its phylogeny based on the analysis of core genome single‐nucleotide polymorphisms. We demonstrate that acquisition of a 36‐kb genome segment from serotype M12 GAS and the bacteriophage‐encoded DNase Sda1 led to increased virulence of the M1T1 precursor and occurred relatively early in the molecular evolutionary history of this strain. The more recent acquisition of the phage‐encoded superantigen SpeA is likely to have provided selection advantage for the global dissemination of the M1T1 clone. This study provides an exemplar for the evolution and emergence of virulent clones from microbial populations existing commensally or causing only superficial infection.—Maamary, P. G., Ben Zakour, N. L., Cole, J. N., Hollands, A., Aziz, R. K., Barnett, T. C., Cork, A. J., Henningham, A., Sanderson‐Smith, M., McArthur, J. D., Venturini, C., Gillen, C. M., Kirk, J. K., Johnson, D. R., Taylor, W. L., Kaplan, E. L., Kotb, M., Nizet, V., Beatson, S. A., Walker, M. J. Tracing the evolutionary history of the pandemic group A streptococcal M1T1 clone. FASEB J. 26, 4675–4684 (2012). www.fasebj.org

Collaboration


Dive into the Jason N. Cole's collaboration.

Top Co-Authors

Avatar

Victor Nizet

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark J. Walker

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Partho Ghosh

University of California

View shared research outputs
Top Co-Authors

Avatar

Amanda J. Cork

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar

Malak Kotb

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Samira Dahesh

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge