Jason P. Price
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason P. Price.
The EMBO Journal | 2004
Annemieke A. Michels; Alessandro Fraldi; Qintong Li; Todd E. Adamson; François Bonnet; Van Trung Nguyen; Stanley C. Sedore; Jason P. Price; David H. Price; Luigi Lania; Olivier Bensaude
The positive transcription elongation factor b (P‐TEFb) plays a pivotal role in productive elongation of nascent RNA molecules by RNA polymerase II. Core active P‐TEFb is composed of CDK9 and cyclin T. In addition, mammalian cell extracts contain an inactive P‐TEFb complex composed of four components, CDK9, cyclin T, the 7SK snRNA and the MAQ1/HEXIM1 protein. We now report an in vitro reconstitution of 7SK‐dependent HEXIM1 association to purified P‐TEFb and subsequent CDK9 inhibition. Yeast three‐hybrid tests and gel‐shift assays indicated that HEXIM1 binds 7SK snRNA directly and a 7SK snRNA‐recognition motif was identified in the central part of HEXIM1 (amino acids (aa) 152–155). Data from yeast two‐hybrid and pull‐down assay on GST fusion proteins converge to a direct binding of P‐TEFb to the HEXIM1 C‐terminal domain (aa 181–359). Consistently, point mutations in an evolutionarily conserved motif (aa 202–205) were found to suppress P‐TEFb binding and inhibition without affecting 7SK recognition. We propose that the RNA‐binding domain of HEXIM1 mediates its association with 7SK and that P‐TEFb then enters the complex through association with HEXIM1.
Nucleic Acids Research | 2007
Stanley C. Sedore; Sarah A. Byers; Sebastian Biglione; Jason P. Price; Wendy Maury; David H. Price
Basal transcription of the HIV LTR is highly repressed and requires Tat to recruit the positive transcription elongation factor, P-TEFb, which functions to promote the transition of RNA polymerase II from abortive to productive elongation. P-TEFb is found in two forms in cells, a free, active form and a large, inactive complex that also contains 7SK RNA and HEXIM1 or HEXIM2. Here we show that HIV infection of cells led to the release of P-TEFb from the large form. Consistent with Tat being the cause of this effect, transfection of a FLAG-tagged Tat in 293T cells caused a dramatic shift of P-TEFb out of the large form to a smaller form containing Tat. In vitro, Tat competed with HEXIM1 for binding to 7SK, blocked the formation of the P-TEFb–HEXIM1–7SK complex, and caused the release P-TEFb from a pre-formed P-TEFb–HEXIM1–7SK complex. These findings indicate that Tat can acquire P-TEFb from the large form. In addition, we found that HEXIM1 binds tightly to the HIV 5′ UTR containing TAR and recruits and inhibits P-TEFb activity. This suggests that in the absence of Tat, HEXIM1 may bind to TAR and repress transcription elongation of the HIV LTR.
Journal of Biological Chemistry | 2005
Sarah A. Byers; Jason P. Price; Jeffrey J. Cooper; Qintong Li; David H. Price
The kinase activity of positive transcription elongation factor b (P-TEFb), composed of cyclin-dependent kinase 9 and cyclin T1 or T2, is required for the transition of RNA polymerase II into productive elongation. P-TEFb activity has been shown to be negatively regulated by association with the small nuclear RNA 7SK and the HEXIM1 protein. Here, we characterize HEXIM2, a previously predicted protein with sequence similarity to HEXIM1. HEXIM2 is expressed in HeLa and Jurkat cells, and glycerol gradient analysis and immunoprecipitations indicate that HEXIM2, like HEXIM1, has a regulated association with P-TEFb. As HEXIM1 is knocked down, HEXIM2 functionally compensates for its association with P-TEFb. Electrophoretic mobility shift assays and in vitro kinase assays demonstrate that HEXIM2 forms complexes containing 7SK and P-TEFb and, in conjunction with 7SK, inhibits P-TEFb kinase activity. Our results provide strong evidence that HEXIM2 is a regulator of P-TEFb function. Furthermore, our results support the idea that the utilization of HEXIM1 or HEXIM2 to bind and inhibit P-TEFb can be differentially regulated in vivo.
Retrovirology | 2007
Sebastian Biglione; Sarah A. Byers; Jason P. Price; Van Trung Nguyen; Olivier Bensaude; David H. Price; Wendy Maury
The positive transcription elongation factor, P-TEFb, comprised of cyclin dependent kinase 9 (Cdk9) and cyclin T1, T2 or K regulates the productive elongation phase of RNA polymerase II (Pol II) dependent transcription of cellular and integrated viral genes. P-TEFb containing cyclin T1 is recruited to the HIV long terminal repeat (LTR) by binding to HIV Tat which in turn binds to the nascent HIV transcript. Within the cell, P-TEFb exists as a kinase-active, free form and a larger, kinase-inactive form that is believed to serve as a reservoir for the smaller form. We developed a method to rapidly quantitate the relative amounts of the two forms based on differential nuclear extraction. Using this technique, we found that titration of the P-TEFb inhibitors flavopiridol, DRB and seliciclib onto HeLa cells that support HIV replication led to a dose dependent loss of the large form of P-TEFb. Importantly, the reduction in the large form correlated with a reduction in HIV-1 replication such that when 50% of the large form was gone, HIV-1 replication was reduced by 50%. Some of the compounds were able to effectively block HIV replication without having a significant impact on cell viability. The most effective P-TEFb inhibitor flavopiridol was evaluated against HIV-1 in the physiologically relevant cell types, peripheral blood lymphocytes (PBLs) and monocyte derived macrophages (MDMs). Flavopiridol was found to have a smaller therapeutic index (LD50/IC50) in long term HIV-1 infectivity studies in primary cells due to greater cytotoxicity and reduced efficacy at blocking HIV-1 replication. Initial short term studies with P-TEFb inhibitors demonstrated a dose dependent loss of the large form of P-TEFb within the cell and a concomitant reduction in HIV-1 infectivity without significant cytotoxicity. These findings suggested that inhibitors of P-TEFb may serve as effective anti-HIV-1 therapies. However, longer term HIV-1 replication studies indicated that these inhibitors were more cytotoxic and less efficacious against HIV-1 in the primary cell cultures.BackgroundThe positive transcription elongation factor, P-TEFb, comprised of cyclin dependent kinase 9 (Cdk9) and cyclin T1, T2 or K regulates the productive elongation phase of RNA polymerase II (Pol II) dependent transcription of cellular and integrated viral genes. P-TEFb containing cyclin T1 is recruited to the HIV long terminal repeat (LTR) by binding to HIV Tat which in turn binds to the nascent HIV transcript. Within the cell, P-TEFb exists as a kinase-active, free form and a larger, kinase-inactive form that is believed to serve as a reservoir for the smaller form.ResultsWe developed a method to rapidly quantitate the relative amounts of the two forms based on differential nuclear extraction. Using this technique, we found that titration of the P-TEFb inhibitors flavopiridol, DRB and seliciclib onto HeLa cells that support HIV replication led to a dose dependent loss of the large form of P-TEFb. Importantly, the reduction in the large form correlated with a reduction in HIV-1 replication such that when 50% of the large form was gone, HIV-1 replication was reduced by 50%. Some of the compounds were able to effectively block HIV replication without having a significant impact on cell viability. The most effective P-TEFb inhibitor flavopiridol was evaluated against HIV-1 in the physiologically relevant cell types, peripheral blood lymphocytes (PBLs) and monocyte derived macrophages (MDMs). Flavopiridol was found to have a smaller therapeutic index (LD50/IC50) in long term HIV-1 infectivity studies in primary cells due to greater cytotoxicity and reduced efficacy at blocking HIV-1 replication.ConclusionInitial short term studies with P-TEFb inhibitors demonstrated a dose dependent loss of the large form of P-TEFb within the cell and a concomitant reduction in HIV-1 infectivity without significant cytotoxicity. These findings suggested that inhibitors of P-TEFb may serve as effective anti-HIV-1 therapies. However, longer term HIV-1 replication studies indicated that these inhibitors were more cytotoxic and less efficacious against HIV-1 in the primary cell cultures.
The EMBO Journal | 2005
Matjaz Barboric; Jiří Kohoutek; Jason P. Price; David H. Price; B. Matija Peterlin
Transcription elongation of eukaryotic genes by RNA polymerase II depends on the positive transcription elongation factor b (P‐TEFb). When sequestered into the large complex, P‐TEFb kinase activity is inhibited by the coordinate actions of 7SK small nuclear RNA (7SK snRNA) and hexamethylene bisacetamide (HMBA)‐induced protein 1 (HEXIM1). We found that the basic region in HEXIM1 directs its nuclear import via two monopartite and two bipartite nuclear localization sequences. Moreover, the arginine‐rich motif within it is essential for its binding to 7SK snRNA, P‐TEFb, and inhibition of transcription. Notably, the basic region interacts with the adjacent acidic regions in the absence of RNA. The removal of the positive or negative charges from these regions in HEXIM1 leads to its sequestration into the large complex and inhibition of transcription independently of the arginine‐rich motif. Finally, the removal of the negative charges from HEXIM1 results in its subnuclear localization into nuclear speckles. We propose a model where the interplay between 7SK snRNA and oppositely charged regions in HEXIM1 direct its binding to P‐TEFb and subcellular localization that culminates in the inhibition of transcription.
Pharmaceutical Biology | 2009
Diane F. Birt; Mark P. Widrlechner; Kimberly D.P. Hammer; Matthew L. Hillwig; Jingqiang Wei; George A. Kraus; Patricia A. Murphy; Joe-Ann McCoy; Eve Syrkin Wurtele; Jeffrey D. Neighbors; David F. Wiemer; Wendy Maury; Jason P. Price
The Iowa Center for Research on Botanical Dietary Supplements seeks to optimize Echinacea, Hypericum, and Prunella botanical supplements for human-health benefit, emphasizing anti-viral, anti-inflammatory, and anti-pain activities. This mini-review reports on ongoing studies on Hypericum. The Center uses the genetically diverse, well-documented Hypericum populations collected and maintained at the USDA-ARS North Central Regional Plant Introduction Station (NCRPIS), and the strength of research in synthetic chemistry at Iowa State University to tap natural diversity, to help discover key constituents and interactions among constituents that impact bioactivity and toxicity. The NCRPIS has acquired more than 180 distinct populations of Hypericum, with a focus on Hypericum perforatum L. (Hypericaceae), representing about 13% of currently recognized taxa. Center chemists have developed novel synthetic pathways for key flavones, acyl phloroglucinols, hyperolactones, and a tetralin that have been found in Hypericum, and these compounds are used as standards and for bioactivity studies. Both light-dependent and light-independent anti-viral activities have been identified by using bioactivity-guided fractionation of H. perforatum and a HIV-1 infection test system. Our Center has focused on light-independent activity, potentially due to novel chemicals, and polar fractions are undergoing further fractionation. Anti-inflammatory activity has been found to be light-independent, and fractionation of a flavonoid-rich extract revealed four compounds (amentoflavone, chlorogenic acid, pseudohypericin, and quercetin) that interacted in the light to inhibit lipopolysaccharide-induced prostaglandin E2 activity. The Center continues to explore novel populations of H. perforatum and related species to identify constituents and interactions of constituents that contribute to potential health benefits related to infection.
Journal of Biological Chemistry | 2014
Abdelhamid M. Azzaz; Michael W. Vitalini; Andrew S. Thomas; Jason P. Price; Melissa J. Blacketer; Diane E. Cryderman; Luka N. Zirbel; Christopher L. Woodcock; Adrian H. Elcock; Lori L. Wallrath; Michael A. Shogren-Knaak
Background: Heterochromatin is enriched for di- and tri-methylated lysine 9 of histone H3 (H3K9Me2/3) and heterochromatin protein 1 (HP1Hsα .). Results: The association of HP1Hsα with H3K9Me3-containing nucleosome arrays facilitated array compaction and cross-array interactions. Conclusion: HP1Hsα association caused intra- and inter-array associations, leading to chromatin condensation and looping. Significance: An understanding of HP1Hsα-nucleosome interactions provides insights on the structure and functions of heterochromatin. HP1Hsα-containing heterochromatin is located near centric regions of chromosomes and regulates DNA-mediated processes such as DNA repair and transcription. The higher-order structure of heterochromatin contributes to this regulation, yet the structure of heterochromatin is not well understood. We took a multidisciplinary approach to determine how HP1Hsα-nucleosome interactions contribute to the structure of heterochromatin. We show that HP1Hsα preferentially binds histone H3K9Me3-containing nucleosomal arrays in favor of non-methylated nucleosomal arrays and that nonspecific DNA interactions and pre-existing chromatin compaction promote binding. The chromo and chromo shadow domains of HP1Hsα play an essential role in HP1Hsα-nucleosome interactions, whereas the hinge region appears to have a less significant role. Electron microscopy of HP1Hsα-associated nucleosomal arrays showed that HP1Hsα caused nucleosome associations within an array, facilitating chromatin condensation. Differential sedimentation of HP1Hsα-associated nucleosomal arrays showed that HP1Hsα promotes interactions between arrays. These strand-to-strand interactions are supported by in vivo studies where tethering the Drosophila homologue HP1a to specific sites promotes interactions with distant chromosomal sites. Our findings demonstrate that HP1Hsα-nucleosome interactions cause chromatin condensation, a process that regulates many chromosome events.
Virology Journal | 2011
ChoonSeok Oh; Jason P. Price; Melinda A. Brindley; Mark P. Widrlechner; Luping Qu; Joe-Ann McCoy; Patricia A. Murphy; Catherine C. Hauck; Wendy Maury
BackgroundThe mint family (Lamiaceae) produces a wide variety of constituents with medicinal properties. Several family members have been reported to have antiviral activity, including lemon balm (Melissa officinalis L.), sage (Salvia spp.), peppermint (Mentha × piperita L.), hyssop (Hyssopus officinalis L.), basil (Ocimum spp.) and self-heal (Prunell a vulgaris L.). To further characterize the anti-lentiviral activities of Prunella vulgaris, water and ethanol extracts were tested for their ability to inhibit HIV-1 infection.ResultsAqueous extracts contained more anti-viral activity than did ethanol extracts, displaying potent antiviral activity against HIV-1 at sub μg/mL concentrations with little to no cellular cytotoxicity at concentrations more than 100-fold higher. Time-of-addition studies demonstrated that aqueous extracts were effective when added during the first five hours following initiation of infection, suggesting that the botanical constituents were targeting entry events. Further analysis revealed that extracts inhibited both virus/cell interactions and post-binding events. While only 40% inhibition was maximally achieved in our virus/cell interaction studies, extract effectively blocked post-binding events at concentrations similar to those that blocked infection, suggesting that it was targeting of these latter steps that was most important for mediating inhibition of virus infectivity.ConclusionsWe demonstrate that aqueous P. vulgaris extracts inhibited HIV-1 infectivity. Our studies suggest that inhibition occurs primarily by interference of early, post-virion binding events. The ability of aqueous extracts to inhibit early events within the HIV life cycle suggests that these extracts, or purified constituents responsible for the antiviral activity, are promising microbicides and/or antivirals against HIV-1.
Virology Journal | 2009
Wendy Maury; Jason P. Price; Melinda A. Brindley; ChoonSeok Oh; Jeffrey D. Neighbors; David F. Wiemer; Nickolas Wills; Susan Carpenter; Catherine C. Hauck; Patricia A. Murphy; Mark P. Widrlechner; Kathleen Delate; Ganesh Kumar; George A. Kraus; Ludmila Rizshsky; Basil J. Nikolau
BackgroundLight-dependent activities against enveloped viruses in St. Johns Wort (Hypericum perforatum) extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not been investigated.ResultsHere, we identify the light-independent inhibition of human immunodeficiency virus-1 (HIV-1) by highly purified fractions of chloroform extracts of H. perforatum. Both cytotoxicity and antiviral activity were evident in initial chloroform extracts, but bioassay-guided fractionation produced fractions that inhibited HIV-1 with little to no cytotoxicity. Separation of these two biological activities has not been reported for constituents responsible for the light-dependent antiviral activities. Antiviral activity was associated with more polar subfractions. GC/MS analysis of the two most active subfractions identified 3-hydroxy lauric acid as predominant in one fraction and 3-hydroxy myristic acid as predominant in the other. Synthetic 3-hydroxy lauric acid inhibited HIV infectivity without cytotoxicity, suggesting that this modified fatty acid is likely responsible for observed antiviral activity present in that fraction. As production of 3-hydroxy fatty acids by plants remains controversial, H. perforatum seedlings were grown sterilely and evaluated for presence of 3-hydroxy fatty acids by GC/MS. Small quantities of some 3-hydroxy fatty acids were detected in sterile plants, whereas different 3-hydroxy fatty acids were detected in our chloroform extracts or field-grown material.ConclusionThrough bioguided fractionation, we have identified that 3-hydroxy lauric acid found in field grown Hypericum perforatum has anti-HIV activity. This novel anti-HIV activity can be potentially developed into inexpensive therapies, expanding the current arsenal of anti-retroviral agents.
Microscopy and Microanalysis | 2010
Hilal Ilarslan; Hl Babka; Matthew L. Hillwig; Lankun Wu; E Syrkin Wurtele; Jason P. Price; Wendy Maury
The genus Hypericum is home to a number of plant species that have promising medicinal properties. Hypericum gentianoides is a North American species formerly utilized medicinally by Cherokee Native Americans [1]. Several unusual acylphloroglucinols that may induce immune responses in mammalian macrophages have recently been discovered in this species [2]. Here, we report several bioactivities of H. gentianoides extracts on mammalian cells and describe the ontology of secretory glands accumulating these phytochemicals in planta. Hypericum gentianoides extracts alter calcium homeostasis in HEK293 cells and rat astrocytes. In addition extracts from H. gentianoides inhibit the infectivity of human immunodeficiency virus (HIV) on HeLa37 cells in infectivity assays.