Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason R. Dobson is active.

Publication


Featured researches published by Jason R. Dobson.


Nature Genetics | 2015

Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes

Mark D. M. Leiserson; Fabio Vandin; Hsin-Ta Wu; Jason R. Dobson; Jonathan V Eldridge; Jacob L Thomas; Alexandra Papoutsaki; Younhun Kim; Beifang Niu; Michael D. McLellan; Michael S. Lawrence; Abel Gonzalez-Perez; David Tamborero; Yuwei Cheng; Gregory A Ryslik; Nuria Lopez-Bigas; Gad Getz; Li Ding; Benjamin J. Raphael

Cancers exhibit extensive mutational heterogeneity, and the resulting long-tail phenomenon complicates the discovery of genes and pathways that are significantly mutated in cancer. We perform a pan-cancer analysis of mutated networks in 3,281 samples from 12 cancer types from The Cancer Genome Atlas (TCGA) using HotNet2, a new algorithm to find mutated subnetworks that overcomes the limitations of existing single-gene, pathway and network approaches. We identify 16 significantly mutated subnetworks that comprise well-known cancer signaling pathways as well as subnetworks with less characterized roles in cancer, including cohesin, condensin and others. Many of these subnetworks exhibit co-occurring mutations across samples. These subnetworks contain dozens of genes with rare somatic mutations across multiple cancers; many of these genes have additional evidence supporting a role in cancer. By illuminating these rare combinations of mutations, pan-cancer network analyses provide a roadmap to investigate new diagnostic and therapeutic opportunities across cancer types.


Genome Medicine | 2014

Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine

Benjamin J. Raphael; Jason R. Dobson; Layla Oesper; Fabio Vandin

High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high-throughput DNA sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on protein sequence or structure. Finally, we review techniques to identify recurrent combinations of somatic mutations, including approaches that examine mutations in known pathways or protein-interaction networks, as well as de novo approaches that identify combinations of mutations according to statistical patterns of mutual exclusivity. These techniques, coupled with advances in high-throughput DNA sequencing, are enabling precision medicine approaches to the diagnosis and treatment of cancer.


Genome Biology | 2014

Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis.

Hai Wu; Troy W. Whitfield; Jonathan A. R. Gordon; Jason R. Dobson; Phillip W. L. Tai; Andre J. van Wijnen; Janet L. Stein; Gary S. Stein; Jane B. Lian

BackgroundOsteogenesis is a highly regulated developmental process and continues during the turnover and repair of mature bone. Runx2, the master regulator of osteoblastogenesis, directs a transcriptional program essential for bone formation through genetic and epigenetic mechanisms. While individual Runx2 gene targets have been identified, further insights into the broad spectrum of Runx2 functions required for osteogenesis are needed.ResultsBy performing genome-wide characterization of Runx2 binding at the three major stages of osteoblast differentiation - proliferation, matrix deposition and mineralization - we identify Runx2-dependent regulatory networks driving bone formation. Using chromatin immunoprecipitation followed by high-throughput sequencing over the course of these stages, we identify approximately 80,000 significantly enriched regions of Runx2 binding throughout the mouse genome. These binding events exhibit distinct patterns during osteogenesis, and are associated with proximal promoters and also non-promoter regions: upstream, introns, exons, transcription termination site regions, and intergenic regions. These peaks were partitioned into clusters that are associated with genes in complex biological processes that support bone formation. Using Affymetrix expression profiling of differentiating osteoblasts depleted of Runx2, we identify novel Runx2 targets including Ezh2, a critical epigenetic regulator; Crabp2, a retinoic acid signaling component; Adamts4 and Tnfrsf19, two remodelers of the extracellular matrix. We demonstrate by luciferase assays that these novel biological targets are regulated by Runx2 occupancy at non-promoter regions.ConclusionsOur data establish that Runx2 interactions with chromatin across the genome reveal novel genes, pathways and transcriptional mechanisms that contribute to the regulation of osteoblastogenesis.


Breast Cancer Research | 2010

Cancer-related ectopic expression of the bone-related transcription factor RUNX2 in non-osseous metastatic tumor cells is linked to cell proliferation and motility

David Tai Leong; Joleen Lim; Xuewei Goh; Jitesh Pratap; Barry P. Pereira; Hui Si Kwok; Saminathan Suresh Nathan; Jason R. Dobson; Jane B. Lian; Yoshiaki Ito; P. Mathijs Voorhoeve; Gary S. Stein; Manuel Salto-Tellez; Simon M. Cool; Andre J. Van Wijnen

IntroductionMetastatic breast cancer cells frequently and ectopically express the transcription factor RUNX2, which normally attenuates proliferation and promotes maturation of osteoblasts. RUNX2 expression is inversely regulated with respect to cell growth in osteoblasts and deregulated in osteosarcoma cells.MethodsHere, we addressed whether the functional relationship between cell growth and RUNX2 gene expression is maintained in breast cancer cells. We also investigated whether the aberrant expression of RUNX2 is linked to phenotypic parameters that could provide a selective advantage to cells during breast cancer progression.ResultsWe find that, similar to its regulation in osteoblasts, RUNX2 expression in MDA-MB-231 breast adenocarcinoma cells is enhanced upon growth factor deprivation, as well as upon deactivation of the mitogen-dependent MEK-Erk pathway or EGFR signaling. Reduction of RUNX2 levels by RNAi has only marginal effects on cell growth and expression of proliferation markers in MDA-MB-231 breast cancer cells. Thus, RUNX2 is not a critical regulator of cell proliferation in this cell type. However, siRNA depletion of RUNX2 in MDA-MB-231 cells reduces cell motility, while forced exogenous expression of RUNX2 in MCF7 cells increases cell motility.ConclusionsOur results support the emerging concept that the osteogenic transcription factor RUNX2 functions as a metastasis-related oncoprotein in non-osseous cancer cells.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Transcriptional corepressor TLE1 functions with Runx2 in epigenetic repression of ribosomal RNA genes.

Syed A. Ali; Sayyed K. Zaidi; Jason R. Dobson; Abdul Rauf Shakoori; Jane B. Lian; Janet L. Stein; Andre J. Van Wijnen; Gary S. Stein

Epigenetic control of ribosomal RNA (rRNA) gene transcription by cell type-specific regulators, such as the osteogenic transcription factor Runx2, conveys cellular memory of growth and differentiation to progeny cells during mitosis. Here, we examined whether coregulatory proteins contribute to epigenetic functions that are mitotically transmitted by Runx2 in osteoblastic cells. We show that the transcriptional corepressor Transducin Like Enhancer-1 (TLE1) associates with rRNA genes during mitosis and interphase through interaction with Runx2. Mechanistically, depletion of TLE1 relieves Runx2-mediated repression of rRNA genes transcription and selectively increases histone modifications linked to active transcription. Biologically, loss of TLE-dependent rRNA gene repression coincides with increased global protein synthesis and enhanced cell proliferation. Our findings reinforce the epigenetic marking target genes by phenotypic transcription factors in mitosis and demonstrate a requirement for retention of coregulatory factors to sustain physiological control of gene expression during proliferation of lineage committed cells.


Journal of Cellular Physiology | 2015

The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation

Qiong Wu; Pasil Madany; Jacqueline Akech; Jason R. Dobson; Stephen Douthwright; Gillian Browne; Jennifer L. Colby; Georg E. Winter; James E. Bradner; Jitesh Pratap; Greenfield Sluder; Rohit Bhargava; Simion I. Chiosea; Andre J. van Wijnen; Janet L. Stein; Gary S. Stein; Jane B. Lian; Jeffrey A. Nickerson; Anthony N. Imbalzano

The Brahma (BRM) and Brahma‐related Gene 1 (BRG1) ATPases are highly conserved homologs that catalyze the chromatin remodeling functions of the multi‐subunit human SWI/SNF chromatin remodeling enzymes in a mutually exclusive manner. SWI/SNF enzyme subunits are mutated or missing in many cancer types, but are overexpressed without apparent mutation in other cancers. Here, we report that both BRG1 and BRM are overexpressed in most primary breast cancers independent of the tumors receptor status. Knockdown of either ATPase in a triple negative breast cancer cell line reduced tumor formation in vivo and cell proliferation in vitro. Fewer cells in S phase and an extended cell cycle progression time were observed without any indication of apoptosis, senescence, or alterations in migration or attachment properties. Combined knockdown of BRM and BRG1 showed additive effects in the reduction of cell proliferation and time required for completion of cell cycle, suggesting that these enzymes promote cell cycle progression through independent mechanisms. Knockout of BRG1 or BRM using CRISPR/Cas9 technology resulted in the loss of viability, consistent with a requirement for both enzymes in triple negative breast cancer cells. J. Cell. Physiol. 9999: 2683–2694, 2015.


Journal of Cell Science | 2012

A RUNX2–HDAC1 co-repressor complex regulates rRNA gene expression by modulating UBF acetylation

Sayed A. Ali; Jason R. Dobson; Jane B. Lian; Janet L. Stein; Andre J. Van Wijnen; Sayyed K. Zaidi; Gary S. Stein

The osteogenic and oncogenic transcription factor RUNX2 downregulates the RNA polymerase I (RNA Pol I)-mediated transcription of rRNAs and changes histone modifications associated with the rDNA repeat. However, the mechanisms by which RUNX2 suppresses rRNA transcription are not well understood. RUNX2 cofactors such as histone deacetylases (HDACs) play a key role in chromatin remodeling and regulation of gene transcription. Here, we show that RUNX2 recruits HDAC1 to the rDNA repeats in osseous cells. This recruitment alters the histone modifications associated with active rRNA-encoding genes and causes deacetylation of the protein upstream binding factor (UBF, also known as UBTF). Downregulation of RUNX2 expression reduces the localization of HDAC1 to the nucleolar periphery and also decreases the association between HDAC1 and UBF. Functionally, depletion of HDAC1 relieves the RUNX2-mediated repression of rRNA-encoding genes and concomitantly increases cell proliferation and global protein synthesis in osseous cells. Our findings collectively identify a RUNX2–HDAC1-dependent mechanism for the regulation of rRNA-encoding genes and suggest that there is plasticity to RUNX2-mediated epigenetic control, which is mediated through selective mitotic exclusion of co-regulatory factors.


Cancer Cell International | 2014

hsa-mir-30c promotes the invasive phenotype of metastatic breast cancer cells by targeting NOV/CCN3.

Jason R. Dobson; Hanna Taipaleenmäki; Yu-Jie Hu; Deli Hong; Andre J. van Wijnen; Janet L. Stein; Gary S. Stein; Jane B. Lian; Jitesh Pratap

BackgroundFor treatment and prevention of metastatic disease, one of the premier challenges is the identification of pathways and proteins to target for clinical intervention. Micro RNAs (miRNAs) are short, non-coding RNAs, which regulate cellular activities by either mRNA degradation or translational inhibition. Our studies focused on the invasive properties of hsa-mir30c based on its high expression in MDA-MB-231 metastatic cells and our bioinformatic analysis of the Cancer Genome Atlas that identified aberrant hsa-mir-30c to be associated with poor survival.MethodsContributions of hsa-mir-30c to breast cancer cell invasion were examined by Matrigel invasion transwell assays following modulation of hsa-mir-30c or hsa-mir-30c* levels in MDA-MB-231 cells. hsa-mir-30c in silico predicted targets linked to cell invasion were screened for targeting by hsa-mir-30c in metastatic breast cancer cells by RT-qPCR. The contribution to invasion by a target of hsa-mir-30c, Nephroblastoma overexpressed (NOV), was characterized by siRNA and invasion assays. Significant effects were determined using Student’s T-tests with Welch’s correction for unequal variance.ResultsMCF-7 and MDA-MB-231 cells were used as models of poorly invasive and late-stage metastatic disease, respectively. By modulating the levels of hsa-mir-30c in these cells, we observed concomitant changes in breast cancer cell invasiveness. From predicted targets of hsa-mir-30c that were related to cellular migration and invasion, NOV/CCN3 was identified as a novel target of hsa-mir-30c. Depleting NOV by siRNA caused a significant increase in the invasiveness of MDA-MB-231 cells is a regulatory protein associated with the extracellular matrix.ConclusionsNOV/CCN3 expression, which protects cells from invasion, is known in patient tumors to inversely correlate with advanced breast cancer and metastasis. This study has identified a novel target of hsa-mir-30c, NOV, which is an inhibitor of the invasiveness of metastatic breast cancer cells. Thus, hsa-mir-30c-mediated inhibition of NOV levels promotes the invasive phenotype of MDA-MB-231 cells and significantly, the miR-30/NOV pathways is independent of RUNX2, a known target of hsa-mir-30c that promotes osteolytic disease in metastatic breast cancer cells. Our findings allow for mechanistic insight into the clinical observation of poor survival of patients with elevated hsa-mir-30c levels, which can be considered for miRNA-based translational studies.


Nucleic Acids Research | 2014

The bone-specific Runx2-P1 promoter displays conserved three-dimensional chromatin structure with the syntenic Supt3h promoter

A. Rasim Barutcu; Phillip W. L. Tai; Hai Wu; Jonathan A. R. Gordon; Troy W. Whitfield; Jason R. Dobson; Anthony N. Imbalzano; Jane B. Lian; Andre J. Van Wijnen; Janet L. Stein; Gary S. Stein

Three-dimensional organization of chromatin is fundamental for transcriptional regulation. Tissue-specific transcriptional programs are orchestrated by transcription factors and epigenetic regulators. The RUNX2 transcription factor is required for differentiation of precursor cells into mature osteoblasts. Although organization and control of the bone-specific Runx2-P1 promoter have been studied extensively, long-range regulation has not been explored. In this study, we investigated higher-order organization of the Runx2-P1 promoter during osteoblast differentiation. Mining the ENCODE database revealed interactions between Runx2-P1 and Supt3h promoters in several non-mesenchymal human cell lines. Supt3h is a ubiquitously expressed gene located within the first intron of Runx2. These two genes show shared synteny across species from humans to sponges. Chromosome conformation capture analysis in the murine pre-osteoblastic MC3T3-E1 cell line revealed increased contact frequency between Runx2-P1 and Supt3h promoters during differentiation. This increase was accompanied by enhanced DNaseI hypersensitivity along with RUNX2 and CTCF binding at the Supt3h promoter. Furthermore, interplasmid-3C and luciferase reporter assays showed that the Supt3h promoter can modulate Runx2-P1 activity via direct association. Taken together, our data demonstrate physical proximity between Runx2-P1 and Supt3h promoters, consistent with their syntenic nature. Importantly, we identify the Supt3h promoter as a potential regulator of the bone-specific Runx2-P1 promoter.


Oncotarget | 2016

The BRG1 chromatin remodeling enzyme links cancer cell metabolism and proliferation

Qiong Wu; Pasil Madany; Jason R. Dobson; Jake M. Schnabl; Soni Sharma; Tara C. Smith; Andre J. Van Wijnen; Janet L. Stein; Jane B. Lian; Gary S. Stein; Rohini Muthuswami; Anthony N. Imbalzano; Jeffrey A. Nickerson

Cancer cells reprogram cellular metabolism to meet the demands of growth. Identification of the regulatory machinery that regulates cancer-specific metabolic changes may open new avenues for anti-cancer therapeutics. The epigenetic regulator BRG1 is a catalytic ATPase for some mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is a well-characterized tumor suppressor in some human cancers, but is frequently overexpressed without mutation in other cancers, including breast cancer. Here we demonstrate that BRG1 upregulates de novo lipogenesis and that this is crucial for cancer cell proliferation. Knockdown of BRG1 attenuates lipid synthesis by impairing the transcription of enzymes catalyzing fatty acid and lipid synthesis. Remarkably, exogenous addition of palmitate, the key intermediate in fatty acid synthesis, rescued the cancer cell proliferation defect caused by BRG1 knockdown. Our work suggests that targeting BRG1 to reduce lipid metabolism and, thereby, to reduce proliferation, has promise for epigenetic therapy in triple negative breast cancer.

Collaboration


Dive into the Jason R. Dobson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andre J. Van Wijnen

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Anthony N. Imbalzano

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Deli Hong

University of Vermont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hai Wu

University of Vermont

View shared research outputs
Top Co-Authors

Avatar

Jitesh Pratap

Rush University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge