Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason R. Gerstner is active.

Publication


Featured researches published by Jason R. Gerstner.


Nature Reviews Neuroscience | 2010

Circadian rhythms and memory formation.

Jason R. Gerstner; Jerry C. P. Yin

There has been considerable progress in elucidating the molecular mechanisms that contribute to memory formation and the generation of circadian rhythms. However, it is not well understood how these two processes interact to generate long-term memory. Recent studies in both vertebrate and invertebrate models have shown time-of-day effects on neurophysiology and memory formation, and have revealed a possible role for cycling molecules in memory persistence. Together, these studies suggest that common mechanisms underlie circadian rhythmicity and long-term memory formation.


Appetite | 2013

Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample

Michael A. Grandner; Nicholas Jackson; Jason R. Gerstner; Kristen L. Knutson

Short sleep duration is associated with weight gain and obesity, diabetes, cardiovascular disease, psychiatric illness, and performance deficits. Likewise, long sleep duration is also associated with poor physical and mental health. The role of a healthy diet in habitual sleep duration represents a largely unexplored pathway linking sleep and health. This study evaluated associations between habitual sleep parameters and dietary/nutritional variables obtained via the National Health and Nutrition Examination Survey (NHANES), 2007-2008. We hypothesized that habitual very short (<5h) short (5-6h) and long (9+h) sleep durations are associated with intake of a number of dietary nutrient variables. Overall, energy intake varied across very short (2036kcal), short (2201kcal), and long (1926kcal) sleep duration, relative to normal (2151kcal) sleep duration (p=0.001). Normal sleep duration was associated with the greatest food variety (17.8), compared to very short (14.0), short (16.5) and long (16.3) sleep duration (p<0.001). Associations between sleep duration were found across nutrient categories, with significant associations between habitual sleep duration and proteins, carbohydrates, vitamins and minerals. In stepwise analyses, significant contributors of unique variance included theobromine (long sleep RR=0.910, p<0.05), vitamin C (short sleep RR=0.890, p<0.05), tap water (short sleep RR=0.952, p<0.001; very short (<5h) sleep RR=0.941, p<0.05), lutein+zeaxanthin (short sleep RR=1.123, p<0.05), dodecanoic acid (long sleep RR=0.812, p<0.05), choline (long sleep RR=0.450, p=0.001), lycopene (very short (<5h) sleep RR=0.950, p<0.05), total carbohydrate (very short (<5h) sleep RR=0.494, p<0.05; long sleep RR=0.509, p<0.05), selenium (short sleep RR=0.670, p<0.01) and alcohol (long sleep RR=1.172, p<0.01). Overall, many nutrient variables were associated with short and/or long sleep duration, which may be explained by differences in food variety. Future studies should assess whether these associations are due to appetite dysregulation, due to short/long sleep and/or whether these nutrients have physiologic effects on sleep regulation. In addition, these data may help us better understand the complex relationship between diet and sleep and the potential role of diet in the relationship between sleep and obesity and other cardiometabolic risks.


The Journal of Neuroscience | 2009

Cycling Behavior and Memory Formation

Jason R. Gerstner; Lisa C. Lyons; Kenneth P. Wright; Dawn H. Loh; Oliver Rawashdeh; Kristin Eckel-Mahan; Gregg Roman

Circadian research has spent considerable effort in the determining clock output pathways, including identifying both physiological and behavioral processes that demonstrate significant time-of-day variation. Memory formation and consolidation represent notable processes shaped by endogenous circadian oscillators. To date, very few studies on memory mechanisms have considered potential confounding effects of time-of-day and the organisms innate activity cycles (e.g., nocturnal, diurnal, or crepuscular). The following studies highlight recent work describing this interactive role of circadian rhythms and memory formation, and were presented at a mini-symposium at the 2009 annual meeting of the Society for Neuroscience. The studies illustrate these time-of-day observations in a variety of behavioral paradigms and model organisms, including olfactory avoidance conditioning in Drosophila, long-term sensitization in Aplysia, active-avoidance conditioning in Zebrafish, and classical fear conditioning in rodents, suggesting that the circadian influence on memory behavior is highly conserved across species. Evidence also exists for a conserved mechanistic relationship between specific cycling molecules and memory formation, and the extent to which proper circadian cycling of these molecules is necessary for optimal cognitive performance. Studies describe the involvement of the core clock gene period, as well as vasoactive intestinal peptide, melatonin, and the cAMP/MAPK (cAMP/mitogen-activated protein kinase) cascade. Finally, studies in humans describe evidence for alterations in cognitive performance based on an interaction between sleep–wake homeostasis and the internal circadian clock. Conservation of a functional relationship between circadian rhythms with learning and memory formation across species provides a critical framework for future analysis of molecular mechanisms underlying complex behavior.


Stem Cells | 2009

Regulation of Neural Specification from Human Embryonic Stem Cells by BMP and FGF

Timothy M. LaVaute; Young Yoo; Matthew T. Pankratz; Jason P. Weick; Jason R. Gerstner; Su-Chun Zhang

Inhibition of bone morphogenetic protein (BMP) signaling is required for vertebrate neural induction, and fibroblast growth factors (FGFs) may affect neural induction through phosphorylation at the linker region of Smad1, thus regulating BMP signaling. Here we show that human embryonic stem cells efficiently convert to neuroepithelial cells in the absence of BMP antagonists, or even when exposed to high concentrations of exogenous BMP4. Molecular and functional analyses revealed multiple levels of endogenous BMP signaling inhibition that may account for the efficient neural differentiation. Blocking FGF signaling inhibited neural induction, but did not alter the phosphorylation of the linker region of Smad1, suggesting that FGF enhances human neural specification independently of BMP signaling. STEM CELLS 2009;27:1741–1749


Journal of Sleep Research | 2014

Sleep symptoms associated with intake of specific dietary nutrients.

Michael A. Grandner; Nicholas Jackson; Jason R. Gerstner; Kristen L. Knutson

Sleep symptoms are associated with weight gain and cardiometabolic disease. The potential role of diet has been largely unexplored. Data from the 2007–2008 National Health and Nutrition Examination Survey (NHANES) were used (n = 4552) to determine which nutrients were associated with sleep symptoms in a nationally representative sample. Survey items assessed difficulty falling asleep, sleep maintenance difficulties, non‐restorative sleep and daytime sleepiness. Analyses were adjusted for energy intake, other dietary factors, exercise, body mass index (BMI) and sociodemographics. Population‐weighted, logistic regression, with backwards‐stepwise selection, examined which nutrients were associated with sleep symptoms. Odds ratios (ORs) reflect the difference in odds of sleep symptoms associated with a doubling in nutrient. Nutrients that were associated independently with difficulty falling asleep included (in order): alpha‐carotene (OR = 0.96), selenium (OR = 0.80), dodecanoic acid (OR = 0.91), calcium (OR = 0.83) and hexadecanoic acid (OR = 1.10). Nutrients that were associated independently with sleep maintenance difficulties included: salt (OR = 1.19), butanoic acid (0.81), carbohydrate (OR = 0.71), dodecanoic acid (OR = 0.90), vitamin D (OR = 0.84), lycopene (OR = 0.98), hexanoic acid (OR = 1.25) and moisture (OR = 1.27). Nutrients that were associated independently with non‐restorative sleep included butanoic acid (OR = 1.09), calcium (OR = 0.81), vitamin C (OR = 0.92), water (OR = 0.98), moisture (OR = 1.41) and cholesterol (OR = 1.10). Nutrients that were associated independently with sleepiness included: moisture (OR = 1.20), theobromine (OR = 1.04), potassium (OR = 0.70) and water (OR = 0.97). These results suggest novel associations between sleep symptoms and diet/metabolism, potentially explaining associations between sleep and cardiometabolic diseases.


PLOS ONE | 2011

Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila.

Jason R. Gerstner; William M. Vanderheyden; Paul J. Shaw; Charles F. Landry; Jerry C. P. Yin

Sleep is thought to be important for memory consolidation, since sleep deprivation has been shown to interfere with memory processing. However, the effects of augmenting sleep on memory formation are not well known, and testing the role of sleep in memory enhancement has been limited to pharmacological and behavioral approaches. Here we test the effect of overexpressing the brain-type fatty acid binding protein (Fabp7) on sleep and long-term memory (LTM) formation in Drosophila melanogaster. Transgenic flies carrying the murine Fabp7 or the Drosophila homologue dFabp had reduced baseline sleep but normal LTM, while Fabp induction produced increases in both net sleep and LTM. We also define a post-training consolidation “window” that is sufficient for the observed Fabp-mediated memory enhancement. Since Fabp overexpression increases consolidated daytime sleep bouts, these data support a role for longer naps in improving memory and provide a novel role for lipid-binding proteins in regulating memory consolidation concurrently with changes in behavioral state.


The Journal of Neuroscience | 2012

Time of Day Regulates Subcellular Trafficking, Tripartite Synaptic Localization, and Polyadenylation of the Astrocytic Fabp7 mRNA

Jason R. Gerstner; William M. Vanderheyden; Timothy M. LaVaute; Cara J. Westmark; Labib Rouhana; Allan I. Pack; Marvin Wickens; Charles F. Landry

The astrocyte brain fatty acid binding protein (Fabp7) has previously been shown to have a coordinated diurnal regulation of mRNA and protein throughout mouse brain, and an age-dependent decline in protein expression within synaptoneurosomal fractions. Mechanisms that control time-of-day changes in expression and trafficking Fabp7 to the perisynaptic process are not known. In this study, we confirmed an enrichment of Fabp7 mRNA and protein in the astrocytic perisynaptic compartment, and observed a diurnal change in the intracellular distribution of Fabp7 mRNA in molecular layers of hippocampus. Northern blotting revealed a coordinated time-of-day-dependent oscillation for the Fabp7 mRNA poly(A) tail throughout murine brain. Cytoplasmic polyadenylation element-binding protein 1 (CPEB1) regulates subcellular trafficking and translation of synaptic plasticity-related mRNAs. Here we show that Fabp7 mRNA coimmunoprecipitated with CPEB1 from primary mouse astrocyte extracts, and its 3′UTR contains phylogenetically conserved cytoplasmic polyadenylation elements (CPEs) capable of regulating translation of reporter mRNAs during Xenopus oocyte maturation. Given that Fabp7 expression is confined to astrocytes and neural progenitors in adult mouse brain, the synchronized cycling pattern of Fabp7 mRNA is a novel discovery among known CPE-regulated transcripts. These results implicate circadian, sleep, and/or metabolic control of CPEB-mediated subcellular trafficking and localized translation of Fabp7 mRNA in the tripartite synapse of mammalian brain.


PLOS ONE | 2008

Brain fatty acid binding protein (Fabp7) is diurnally regulated in astrocytes and hippocampal granule cell precursors in adult rodent brain.

Jason R. Gerstner; Quentin Z. Bremer; William M. Vander Heyden; Timothy M. LaVaute; Jerry C. P. Yin; Charles F. Landry

Brain fatty acid binding protein (Fabp7), which is important in early nervous system development, is expressed in astrocytes and neuronal cell precursors in mature brain. We report here that levels of Fabp7 mRNA in adult murine brain change over a 24 hour period. Unlike Fabp5, a fatty acid binding protein that is expressed widely in various cell types within brain, RNA analysis revealed that Fabp7 mRNA levels were elevated during the light period and lower during dark in brain regions involved in sleep and activity mechanisms. This pattern of Fabp7 mRNA expression was confirmed using in situ hybridization and found to occur throughout the entire brain. Changes in the intracellular distribution of Fabp7 mRNA were also evident over a 24 hour period. Diurnal changes in Fabp7, however, were not found in postnatal day 6 brain, when astrocytes are not yet mature. In contrast, granule cell precursors of the subgranular zone of adult hippocampus did undergo diurnal changes in Fabp7 expression. These changes paralleled oscillations in Fabp7 mRNA throughout the brain suggesting that cell-coordinated signals likely control brain-wide Fabp7 mRNA expression. Immunoblots revealed that Fabp7 protein levels also underwent diurnal changes in abundance, with peak levels occurring in the dark period. Of clock or clock-regulated genes, the synchronized, global cycling pattern of Fabp7 expression is unique and implicates glial cells in the response or modulation of activity and/or circadian rhythms.


Neuroscience | 2006

Profiles of Novel Diurnally Regulated Genes in Mouse Hypothalamus: Expression Analysis of the Cysteine And Histidine-Rich Domain-Containing, Zinc-Binding Protein 1, The Fatty Acid-Binding Protein 7 and the Gtpase, Ras-Like Family Member 11B

Jason R. Gerstner; W. M. Vander Heyden; Timothy M. LaVaute; Charles F. Landry

Gene expression profiling of suprachiasmatic nucleus, ventrolateral preoptic area and the lateral hypothalamus was used to identify genes regulated diurnally in the hypothalamus of Mus musculus. The putative transcription regulator, cysteine and histidine-rich domain-containing, zinc binding protein 1, which had not been previously described in brain, was found to cycle diurnally in hypothalamus and forebrain with peak levels of mRNA expression during the dark phase. mRNA for the brain-type fatty acid binding protein 7 was found to change rhythmically in hypothalamic and extra-hypothalamic brain regions reaching peak levels early in the light phase suggesting that lipid metabolism is under circadian regulation in astrocytes. Rhythmically expressed genes in suprachiasmatic nucleus identified here were compared with previous reports in a meta-analysis. Genes held in common included fabp7, and the period gene, Per2. Also identified were genes implicated in guanosine-mediated signaling pathways that included dexamethasone-induced ras-related protein one (dexras1), regulator of G-protein signaling (rgs) 16, and ras-like family member 11b. Northern blotting confirmed diurnal changes in mRNA expression in the hypothalamus for these genes. Ras-like family member 11b was examined in more detail using in situ hybridization and antiphase diurnal changes in expression in suprachiasmatic nucleus and arcuate nucleus were identified implicating the gene in circadian-related, guanosine-mediated signaling. The transcription transactivator protein, CBP/p300-interacting transactivators with glutamic acid/aspartic acid-rich carboxyl-terminal domain, which had not been previously identified in brain, was enriched in suprachiasmatic nucleus and discrete regions of the hypothalamus and forebrain. The potential regulatory role of CBP/p300-interacting transactivators with glutamic acid/aspartic acid-rich carboxyl-terminal domain in the transcription of genes like TGF-alpha implicates the protein in diurnal activity rhythms. These results demonstrate the ability of gene expression profiling to identify potential candidates important in circadian or homeostatic processes.


The Journal of Neuroscience | 2013

dCREB2-Mediated Enhancement of Memory Formation

Thomas C. Tubon; Jiabin Zhang; Eugenia L. Friedman; Haining Jin; Erin D. Gonzales; Hong Zhou; Diana Drier; Jason R. Gerstner; Emily A. Paulson; Robin Fropf; Jerry C. P. Yin

CREB-responsive transcription has an important role in adaptive responses in all cells and tissue. In the nervous system, it has an essential and well established role in long-term memory formation throughout a diverse set of organisms. Activation of this transcription factor correlates with long-term memory formation and disruption of its activity interferes with this process. Most convincingly, augmenting CREB activity in a number of different systems enhances memory formation. In Drosophila, a sequence rearrangement in the original transgene used to enhance memory formation has been a source of confusion. This rearrangement prematurely terminates translation of the full-length protein, leaving the identity of the “enhancing molecule” unclear. In this report, we show that a naturally occurring, downstream, in-frame initiation codon is used to make a dCREB2 protein off of both transgenic and chromosomal substrates. This protein is a transcriptional activator and is responsible for memory enhancement. A number of parameters can affect enhancement, including the short-lived activity of the activator protein, and the time-of-day when induction and behavioral training occur. Our results reaffirm that overexpression of a dCREB2 activator can enhance memory formation and illustrate the complexity of this behavioral enhancement.

Collaboration


Dive into the Jason R. Gerstner's collaboration.

Top Co-Authors

Avatar

Jerry C. P. Yin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan I. Pack

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Isaac J. Perron

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Timothy M. LaVaute

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Marcos G. Frank

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Paul J. Shaw

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge