Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason R. Plemel is active.

Publication


Featured researches published by Jason R. Plemel.


Journal of Neurotrauma | 2011

A SYSTEMATIC REVIEW OF CELLULAR TRANSPLANTATION THERAPIES FOR SPINAL CORD INJURY

Wolfram Tetzlaff; Elena B. Okon; Soheila Karimi-Abdolrezaee; Caitlin E. Hill; Joseph S. Sparling; Jason R. Plemel; Ward T. Plunet; Eve C. Tsai; Darryl C. Baptiste; Laura J. Smithson; Michael D. Kawaja; Michael G. Fehlings; Brian K. Kwon

Cell transplantation therapies have become a major focus in pre-clinical research as a promising strategy for the treatment of spinal cord injury (SCI). In this article, we systematically review the available pre-clinical literature on the most commonly used cell types in order to assess the body of evidence that may support their translation to human SCI patients. These cell types include Schwann cells, olfactory ensheathing glial cells, embryonic and adult neural stem/progenitor cells, fate-restricted neural/glial precursor cells, and bone-marrow stromal cells. Studies were included for review only if they described the transplantation of the cell substrate into an in-vivo model of traumatic SCI, induced either bluntly or sharply. Using these inclusion criteria, 162 studies were identified and reviewed in detail, emphasizing their behavioral effects (although not limiting the scope of the discussion to behavioral effects alone). Significant differences between cells of the same type exist based on the species and age of donor, as well as culture conditions and mode of delivery. Many of these studies used cell transplantations in combination with other strategies. The systematic review makes it very apparent that cells derived from rodent sources have been the most extensively studied, while only 19 studies reported the transplantation of human cells, nine of which utilized bone-marrow stromal cells. Similarly, the vast majority of studies have been conducted in rodent models of injury, and few studies have investigated cell transplantation in larger mammals or primates. With respect to the timing of intervention, nearly all of the studies reviewed were conducted with transplantations occurring subacutely and acutely, while chronic treatments were rare and often failed to yield functional benefits.


The Journal of Neuroscience | 2007

Skin-Derived Precursors Generate Myelinating Schwann Cells That Promote Remyelination and Functional Recovery after Contusion Spinal Cord Injury

Jeff Biernaskie; Joseph S. Sparling; Jie Liu; Casey Shannon; Jason R. Plemel; Yuanyun Xie; Freda D. Miller; Wolfram Tetzlaff

Transplantation of exogenous cells is one approach to spinal cord repair that could potentially enhance the growth and myelination of endogenous axons. Here, we asked whether skin-derived precursors (SKPs), a neural crest-like precursor that can be isolated and expanded from mammalian skin, could be used to repair the injured rat spinal cord. To ask this question, we isolated and expanded genetically tagged murine SKPs and either transplanted them directly into the contused rat spinal cord or differentiated them into Schwann cells (SCs), and performed similar transplantations with the isolated, expanded SKP-derived SCs. Neuroanatomical analysis of these transplants 12 weeks after transplantation revealed that both cell types survived well within the injured spinal cord, reduced the size of the contusion cavity, myelinated endogenous host axons, and recruited endogenous SCs into the injured cord. However, SKP-derived SCs also provided a bridge across the lesion site, increased the size of the spared tissue rim, myelinated spared axons within the tissue rim, reduced reactive gliosis, and provided an environment that was highly conducive to axonal growth. Importantly, SKP-derived SCs provided enhanced locomotor recovery relative to both SKPs and forebrain subventricular zone neurospheres, and had no impact on mechanical or heat sensitivity thresholds. Thus, SKP-derived SCs provide an accessible, potentially autologous source of cells for transplantation into and treatment of the injured spinal cord.


Journal of Neurotrauma | 2008

A Graded Forceps Crush Spinal Cord Injury Model in Mice

Jason R. Plemel; Greg J. Duncan; Kai-Wei K. Chen; Casey Shannon; Sophia Park; Joseph S. Sparling; Wolfram Tetzlaff

Given the rising availability and use of genetically modified animals in basic science research, it has become increasingly important to develop clinically relevant models for spinal cord injury (SCI) for use in mice. We developed a graded forceps crush model of SCI in mice that uses three different forceps with spacers of 0.25, 0.4, and 0.55 mm, to produce severe, moderate, and mild injuries, respectively. Briefly, each mouse was subjected to laminectomy of T5-T7, 15-second spinal cord crush using one of those forceps, behavioral assessments, and post-mortem neuroanatomical analyses. There were significant differences among the three injury severity groups on behavioral measures (Basso Mouse Score, footprint, and ladder analyses), demonstrating an increase in neurological deficits for groups with greater injury severity. Quantitative analysis of the lesion demonstrated that as injury severity increased, lesion size and GFAP negative area increased, and spared tissue, spinal cord cross-sectional area, spared grey matter and spared white matter decreased. These measures strongly correlated with the behavioral outcomes. Similar to other studies of SCI in mice, we report a dense laminin and fibronectin positive extracellular matrix in the lesion sites of injured mice, but unlike those previous studies, we also report the presence of numerous p75 positive Schwann cells in and around the lesion epicenter. These results provide evidence that the graded forceps crush model is an attractive alternative for the study of SCI and related therapeutic interventions. Because of its demonstrated consistency, ease of use, low cost, and clinical relevance, this graded forceps crush is an attractive alternative to the other mouse models of SCI currently available.


Progress in Neurobiology | 2014

Remyelination after spinal cord injury: Is it a target for repair?

Jason R. Plemel; Michael B. Keough; Greg J. Duncan; Joseph S. Sparling; V. Wee Yong; Peter K. Stys; Wolfram Tetzlaff

After spinal cord injury (SCI) there is prolonged and dispersed oligodendrocyte cell death that is responsible for widespread demyelination. To regenerate this lost myelin, many investigators have transplanted myelin-producing cells as a treatment for contusive SCI. There are several documented examples of cellular transplantation improving function after injury, with the degree of myelin regeneration correlating with functional recovery. On the basis of these findings, remyelination is hypothesized to be a beneficial strategy to promote recovery after injury. As cellular transplantation is now entering clinical trials for treatment of SCI, it is important to dissect carefully whether accelerating remyelination after SCI is a valid clinical target. In this review we will discuss the consequences of demyelination and the potential benefits of remyelination as it relates to injury. Prolonged demyelination is hypothesized to enhance axonal vulnerability to degeneration, and is thereby thought to contribute to the axonal degeneration that underlies the permanent functional losses associated with SCI. Currently, strategies to promote remyelination after SCI are largely limited to cellular transplantation. This review discusses those strategies as well as new, and largely untested, modes of therapy that aim to coax endogenous cells residing adjacent to the injury site to differentiate in order to replace lost myelin.


Nature Neuroscience | 2017

Cell transplantation therapy for spinal cord injury

Peggy Assinck; Greg J. Duncan; Brett J. Hilton; Jason R. Plemel; Wolfram Tetzlaff

Spinal cord injury can lead to severe motor, sensory and autonomic dysfunction. Currently, there is no effective treatment for the injured spinal cord. The transplantation of Schwann cells, neural stem cells or progenitor cells, olfactory ensheathing cells, oligodendrocyte precursor cells and mesenchymal stem cells has been investigated as potential therapies for spinal cord injury. However, little is known about the mechanisms through which these individual cell types promote repair and functional improvements. The five most commonly proposed mechanisms include neuroprotection, immunomodulation, axon regeneration, neuronal relay formation and myelin regeneration. A better understanding of the mechanisms whereby these cells promote functional improvements, as well as an appreciation of the obstacles in implementing these therapies and effectively modeling spinal cord injury, will be important to make cell transplantation a viable clinical option and may lead to the development of more targeted therapies.


Experimental Neurology | 2016

The molecular physiology of the axo-myelinic synapse.

Ileana Micu; Jason R. Plemel; Celia Lachance; Juliane Proft; Andrew J. Jansen; Karen Cummins; Jan van Minnen; Peter K. Stys

Myelinated axons efficiently transmit information over long distances. The apposed myelin sheath confers favorable electrical properties, but restricts access of the axon to its extracellular milieu. Therefore, axonal metabolic support may require specific axo-myelinic communication. Here we explored activity-dependent glutamate-mediated signaling from axon to myelin. 2-Photon microscopy was used to image Ca(2+) changes in myelin in response to electrical stimulation of optic nerve axons ex vivo. We show that optic nerve myelin responds to axonal action potentials by a rise in Ca(2+) levels mediated by GluN2D and GluN3A-containing NMDA receptors. Glutamate is released from axons in a vesicular manner that is tetanus toxin-sensitive. The Ca(2+) source for vesicular fusion is provided by ryanodine receptors on axonal Ca(2+) stores, controlled by L-type Ca(2+) channels that sense depolarization of the internodal axolemma. Genetic ablation of GluN2D and GluN3A subunits results in greater lability of the compact myelin. Our results support the existence of a novel synapse between the axon and its myelin, suggesting a means by which traversing action potentials can signal the overlying myelin sheath. This may be an important physiological mechanism by which an axon can signal companion glia for metabolic support or adjust properties of its myelin in a dynamic manner. The axo-myelinic synapse may contribute to learning, while its disturbances may play a role in the pathophysiology of central nervous system disorders such as schizophrenia, where subtle abnormalities of myelinated white matter tracts have been shown in the human, or to frank demyelinating disorders such as multiple sclerosis.


The Journal of Neuroscience | 2012

Axonal Thinning and Extensive Remyelination without Chronic Demyelination in Spinal Injured Rats

Berit Powers; Jurate Lasiene; Jason R. Plemel; Larry Shupe; Steve I. Perlmutter; Wolfram Tetzlaff; Philip J. Horner

Remyelination following spinal cord injury (SCI) is thought to be incomplete; demyelination is reported to persist chronically and is proposed as a compelling therapeutic target. Yet most reports do not distinguish between the myelin status of intact axons and injury-severed axons whose proximal stumps persist but provide no meaningful function. We previously found full remyelination of spared, intact rubrospinal axons caudal to the lesion in chronic mouse SCI. However, the clinical concept of chronically demyelinated spared axons remains controversial. Since mouse models may have limitations in clinical translation, we asked whether the capacity for full remyelination is conserved in clinically relevant chronic rat SCI. We determined myelin status by examining paranodal protein distribution on anterogradely labeled, intact corticospinal and rubrospinal axons throughout the extent of the lesion. Demyelination was evident on proximal stumps of severed axons, but not on intact axons. For the first time, we demonstrate that a majority of intact axons exhibit remyelination (at least one abnormally short internode, <100 μm). Remarkably, shortened internodes were significantly concentrated at the lesion epicenter and individual axons were thinned by 23% compared with their rostral and caudal zones. Mathematical modeling predicted a 25% decrease in conduction velocity at the lesion epicenter due to short internodes and axonal thinning. In conclusion, we do not find a large chronically demyelinated population to target with remyelination therapies. Interventions may be better focused on correcting structural or molecular abnormalities of regenerated myelin.


Nature Communications | 2016

An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination

Michael B. Keough; Jim A. Rogers; Ping Zhang; Samuel K. Jensen; Erin L. Stephenson; Tieyu Chen; Mitchel G. Hurlbert; Lorraine Lau; Khalil S. Rawji; Jason R. Plemel; Marcus Koch; Chang-Chun Ling; V. Wee Yong

Remyelination is the generation of new myelin sheaths after injury facilitated by processes of differentiating oligodendrocyte precursor cells (OPCs). Although this repair phenomenon occurs in lesions of multiple sclerosis patients, many lesions fail to completely remyelinate. A number of factors have been identified that contribute to remyelination failure, including the upregulated chondroitin sulfate proteoglycans (CSPGs) that comprise part of the astrogliotic scar. We show that in vitro, OPCs have dramatically reduced process outgrowth in the presence of CSPGs, and a medication library that includes a number of recently reported OPC differentiation drugs failed to rescue this inhibitory phenotype on CSPGs. We introduce a novel CSPG synthesis inhibitor to reduce CSPG content and find rescued process outgrowth from OPCs in vitro and accelerated remyelination following focal demyelination in mice. Preventing CSPG deposition into the lesion microenvironment may be a useful strategy to promote repair in multiple sclerosis and other neurological disorders.


Journal of Neurotrauma | 2011

Intermittent Fasting Improves Functional Recovery after Rat Thoracic Contusion Spinal Cord Injury

Mi-ae Jeong; Ward T. Plunet; Femke Streijger; Jae H.T. Lee; Jason R. Plemel; Sophia Park; Clarrie K. Lam; Jie Liu; Wolfram Tetzlaff

Spinal cord injury (SCI) often results in a loss of motor and sensory function. Currently there are no validated effective clinical treatments. Previously we found in rats that dietary restriction, in the form of every-other-day fasting (EODF), started prior to (pre-EODF), or after (post-EODF) an incomplete cervical SCI was neuroprotective, increased plasticity, and promoted motor recovery. Here we examined if EODF initiated prior to, or after, a T10 thoracic contusion injury would similarly lead to enhanced functional recovery compared to ad libitum feeding. Additionally, we tested if a group fed every day (pair-fed), but with the same degree of restriction as the EODF animals (∼25% calorie restricted), would also promote functional recovery, to examine if EODFs effect is due to overall calorie restriction, or is specific to alternating sequences of 24-h fasts and ad libitum eating periods. Behaviorally, both pre- and post-EODF groups exhibited better functional recovery in the regularity indexed BBB ambulatory assessment, along with several parameters of their walking pattern measured with the CatWalk device, compared to both the ad-libitium-fed group as well as the pair-fed group. Several histological parameters (intensity and symmetry of serotonin immunostaining caudal to the injury and gray matter sparing) correlated with functional outcome; however, no group differences were observed. Thus besides the beneficial effects of EODF after a partial cervical SCI, we now report that alternating periods of fasting (but not pair-fed) also promotes improved hindlimb locomotion after thoracic spinal cord contusion, demonstrating its robust effect in two different injury models.


Journal of Neuroscience Research | 2010

Combination of olfactory ensheathing cells with local versus systemic cAMP treatment after a cervical rubrospinal tract injury

Frederic Bretzner; Jason R. Plemel; Jie Liu; Miranda W. Richter; A. Jane Roskams; Wolfram Tetzlaff

The failure of CNS axons to regenerate following traumatic injury is due in part to a growth‐inhibitory environment in CNS as well as a weak intrinsic neuronal growth response. Olfactory ensheathing cell (OECs) transplants have been reported to create a favorable environment promoting axonal regeneration, remyelination, and functional recovery after spinal cord injury. However, in our previous experiments, OEC transplants failed to promote regeneration of rubrospinal axons through and beyond the site of a dorsolateral funiculus crush in rats. Rubrospinal neurons undergo massive cell atrophy and limited expression of regeneration‐associated genes after axotomy. Using the same injury model, we tested the hypothesis that treatment of the red nucleus with cAMP, known to stimulate the intrinsic growth response in other neurons, will promote rubrospinal regeneration in combination with OEC transplants. In addition, we assessed a systemic increase of cAMP using the phosphodiesterase inhibitor rolipram. OECs prevented cavity formation, attenuated astrocytic hypertrophy and the retraction of the axotomized rubrospinal axons, and tended to reduce the overall lesion size. OEC transplantation lowered the thresholds for thermal sensitivity of both forepaws. None of our treatments, alone or in combination, promoted rubrospinal regeneration through the lesion site. However, the systemic elevation of cAMP with rolipram resulted in greater numbers of OECs and axonal density within the graft and improved motor performance in a cylinder test in conjunction with enhanced rubrospinal branching and attenuated astrocytic hypertrophy.

Collaboration


Dive into the Jason R. Plemel's collaboration.

Top Co-Authors

Avatar

Wolfram Tetzlaff

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Liu

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Greg J. Duncan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph S. Sparling

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peggy Assinck

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Sohrab B. Manesh

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge