Peggy Assinck
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peggy Assinck.
Nature Neuroscience | 2017
Peggy Assinck; Greg J. Duncan; Brett J. Hilton; Jason R. Plemel; Wolfram Tetzlaff
Spinal cord injury can lead to severe motor, sensory and autonomic dysfunction. Currently, there is no effective treatment for the injured spinal cord. The transplantation of Schwann cells, neural stem cells or progenitor cells, olfactory ensheathing cells, oligodendrocyte precursor cells and mesenchymal stem cells has been investigated as potential therapies for spinal cord injury. However, little is known about the mechanisms through which these individual cell types promote repair and functional improvements. The five most commonly proposed mechanisms include neuroprotection, immunomodulation, axon regeneration, neuronal relay formation and myelin regeneration. A better understanding of the mechanisms whereby these cells promote functional improvements, as well as an appreciation of the obstacles in implementing these therapies and effectively modeling spinal cord injury, will be important to make cell transplantation a viable clinical option and may lead to the development of more targeted therapies.
PLOS ONE | 2013
Femke Streijger; Ward T. Plunet; Jae H.T. Lee; Jie Liu; Clarrie K. Lam; Soeyun Park; Brett J. Hilton; Bas L. Fransen; Keely A. J. Matheson; Peggy Assinck; Brian K. Kwon; Wolfram Tetzlaff
High fat, low carbohydrate ketogenic diets (KD) are validated non-pharmacological treatments for some forms of drug-resistant epilepsy. Ketones reduce neuronal excitation and promote neuroprotection. Here, we investigated the efficacy of KD as a treatment for acute cervical spinal cord injury (SCI) in rats. Starting 4 hours following C5 hemi-contusion injury animals were fed either a standard carbohydrate based diet or a KD formulation with lipid to carbohydrate plus protein ratio of 3:1. The forelimb functional recovery was evaluated for 14 weeks, followed by quantitative histopathology. Post-injury 3:1 KD treatment resulted in increased usage and range of motion of the affected forepaw. Furthermore, KD improved pellet retrieval with recovery of wrist and digit movements. Importantly, after returning to a standard diet after 12 weeks of KD treatment, the improved forelimb function remained stable. Histologically, the spinal cords of KD treated animals displayed smaller lesion areas and more grey matter sparing. In addition, KD treatment increased the number of glucose transporter-1 positive blood vessels in the lesion penumbra and monocarboxylate transporter-1 (MCT1) expression. Pharmacological inhibition of MCTs with 4-CIN (α-cyano-4-hydroxycinnamate) prevented the KD-induced neuroprotection after SCI, In conclusion, post-injury KD effectively promotes functional recovery and is neuroprotective after cervical SCI. These beneficial effects require the function of monocarboxylate transporters responsible for ketone uptake and link the observed neuroprotection directly to the function of ketones, which are known to exert neuroprotection by multiple mechanisms. Our data suggest that current clinical nutritional guidelines, which include relatively high carbohydrate contents, should be revisited.
The Journal of Neuroscience | 2015
Joseph S. Sparling; Frédéric Bretzner; Jeff Biernaskie; Peggy Assinck; Yuan Jiang; Hiroki Arisato; Ward T. Plunet; Jaimie F. Borisoff; Jie Liu; Freda D. Miller; Wolfram Tetzlaff
The transplantation of Schwann cells (SCs) holds considerable promise as a therapy for spinal cord injury, but the optimal source of these cells and the best timing for intervention remains debatable. Previously, we demonstrated that delayed transplantation of SCs generated from neonatal mouse skin-derived precursors (SKP-SCs) promoted repair and functional recovery in rats with thoracic contusions. Here, we conducted two experiments using neonatal rat cells and an incomplete cervical injury model to examine the efficacy of acute SKP-SC transplantation versus media control (Experiment 1) and versus nerve-derived SC or dermal fibroblast (Fibro) transplantation (Experiment 2). Despite limited graft survival, by 10 weeks after injury, rats that received SCs from either source showed improved functional recovery compared with media- or fibroblast-treated animals. Compared with media treatment, SKP-SC-transplanted rats showed enhanced rubrospinal tract (RST) sparing/plasticity in the gray matter (GM) rostral to injury, particularly in the absence of immunosuppression. The functional benefits of SC transplantations over fibroblast treatment correlated with the enhanced preservation of host tissue, reduced RST atrophy, and/or increased RST sparing/plasticity in the GM. In summary, our results indicate that: (1) early transplantation of neonatal SCs generated from skin or nerve promotes repair and functional recovery after incomplete cervical crush injury; (2) either of these cell types is preferable to Fibros for these purposes; and (3) age-matched SCs from these two sources do not differ in terms of their reparative effects or functional efficacy after transplantation into the injured cervical spinal cord.
Journal of Neurotrauma | 2013
Brett J. Hilton; Peggy Assinck; Greg J. Duncan; Daniel Lu; Stephanie Lo; Wolfram Tetzlaff
Although upper extremity functional recovery is a high priority for spinal cord injured patients with cervical injuries, few injury models have been developed in mice with sustained deficits in forelimb motor function. Here, we characterize a dorsolateral funiculus (DLF) crush model in mice, which ablates the rubrospinal tract (RST) unilaterally and thus allows correlation of motor recovery to axonal regeneration in the assessment of molecular regeneration targets. We conducted unilateral DLF crush injuries at cervical levels C4 and C6 and assessed motor recovery in a battery of tests: the rearing test of forelimb asymmetry, the grooming test, staircase pellet reaching, a horizontal ladder task, and CatWalk gait analysis. All tasks revealed lesion effects on forepaw function when DLF crush was instigated at level C4, but deficits were generally only transient in mice with DLF crush performed at level C6. Anterograde tracing of the RST with biotinylated dextran amine revealed the tracts complete ablation. The characterization of a C4 DLF model in mice provides an important tool for assessing molecular regeneration targets to promote functional recovery after spinal cord injury.
The Journal of Neuroscience | 2017
Peggy Assinck; Greg J. Duncan; Jason R. Plemel; Michael J. Lee; Jo Anne Stratton; Sohrab B. Manesh; Jie Liu; Leanne M. Ramer; Shin H. Kang; Dwight E. Bergles; Jeff Biernaskie; Wolfram Tetzlaff
Spontaneous remyelination occurs after spinal cord injury (SCI), but the extent of myelin repair and identity of the cells responsible remain incompletely understood and contentious. We assessed the cellular origin of new myelin by fate mapping platelet-derived growth factor receptor α (PDGFRα), Olig2+, and P0+ cells following contusion SCI in mice. Oligodendrocyte precursor cells (OPCs; PDGFRα+) produced oligodendrocytes responsible for de novo ensheathment of ∼30% of myelinated spinal axons at injury epicenter 3 months after SCI, demonstrating that these resident cells are a major contributor to oligodendrocyte regeneration. OPCs also produced the majority of myelinating Schwann cells in the injured spinal cord; invasion of peripheral myelinating (P0+) Schwann cells made only a limited contribution. These findings reveal that PDGFRα+ cells perform diverse roles in CNS repair, as multipotential progenitors that generate both classes of myelinating cells. This endogenous repair might be exploited as a therapeutic target for CNS trauma and disease. SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to profound functional deficits, though substantial numbers of axons often survive. One possible explanation for these deficits is loss of myelin, creating conduction block at the site of injury. SCI leads to oligodendrocyte death and demyelination, and clinical trials have tested glial transplants to promote myelin repair. However, the degree and duration of myelin loss, and the extent and mechanisms of endogenous repair, have been contentious issues. Here, we use genetic fate mapping to demonstrate that spontaneous myelin repair by endogenous oligodendrocyte precursors is much more robust than previously recognized. These findings are relevant to many types of CNS pathology, raising the possibility that CNS precursors could be manipulated to repair myelin in lieu of glial transplantation.
Journal of Neurotrauma | 2016
Kinon Chen; Jie Liu; Peggy Assinck; Tim Bhatnagar; Femke Streijger; Qingan Zhu; Marcel F. Dvorak; Brian K. Kwon; Wolfram Tetzlaff; Thomas R. Oxland
Abstract The objective of this study was to compare the long-term histological and behavioral outcomes after spinal cord injury (SCI) induced by one of three distinct biomechanical mechanisms: dislocation, contusion, and distraction. Thirty male Sprague-Dawley rats were randomized to incur a traumatic cervical SCI by one of these three clinically relevant mechanisms. The injured cervical spines were surgically stabilized, and motor function was assessed for the following 8 weeks. The spinal cords were then harvested for histologic analysis. Quantification of white matter sparing using Luxol fast blue staining revealed that dislocation injury caused the greatest overall loss of white matter, both laterally and along the rostrocaudal axis of the injured cord. Distraction caused enlarged extracellular spaces and structural alteration in the white matter but spared the most myelinated axons overall. Contusion caused the most severe loss of myelinated axons in the dorsal white matter. Immunohistochemistry for the neuronal marker NeuN combined with Fluoro Nissl revealed that the dislocation mechanism resulted in the greatest neuronal cell losses in both the ventral and dorsal horns. After the distraction injury mechanism, animals displayed no recovery of grip strength over time, in contrast to the animals subjected to contusion or dislocation injuries. After the dislocation injury mechanism, animals displayed no improvement in the grooming test, in contrast to the animals subjected to contusion or distraction injuries. These data indicate that different SCI mechanisms result in distinct patterns of histopathology and behavioral recovery. Understanding this heterogeneity may be important for the future development of therapeutic interventions that target specific neuropathology after SCI.
Acta Neuropathologica | 2017
Greg J. Duncan; Jason R. Plemel; Peggy Assinck; Sohrab B. Manesh; Fraser G. W. Muir; Ryan Hirata; Matan Berson; Jie Liu; Michael Wegner; Ben Emery; G. R. Wayne Moore; Wolfram Tetzlaff
Remyelination is limited in the majority of multiple sclerosis (MS) lesions despite the presence of oligodendrocyte precursor cells (OPCs) in most lesions. This observation has led to the view that a failure of OPCs to fully differentiate underlies remyelination failure. OPC differentiation requires intricate transcriptional regulation, which may be disrupted in chronic MS lesions. The expression of few transcription factors has been differentially compared between remyelinating lesions and lesions refractory to remyelination. In particular, the oligodendrocyte transcription factor myelin regulatory factor (MYRF) is essential for myelination during development, but its role during remyelination and expression in MS lesions is unknown. To understand the role of MYRF during remyelination, we genetically fate mapped OPCs following lysolecithin-induced demyelination of the corpus callosum in mice and determined that MYRF is expressed in new oligodendrocytes. OPC-specific Myrf deletion did not alter recruitment or proliferation of these cells after demyelination, but decreased the density of new glutathione S-transferase π positive oligodendrocytes. Subsequent remyelination in both the spinal cord and corpus callosum is highly impaired following Myrf deletion from OPCs. Individual OPC-derived oligodendrocytes, produced in response to demyelination, showed little capacity to express myelin proteins following Myrf deletion. Collectively, these data demonstrate a crucial role of MYRF in the transition of oligodendrocytes from a premyelinating to a myelinating phenotype during remyelination. In the human brain, we find that MYRF is expressed in NogoA and CNP-positive oligodendrocytes. In MS, there was both a lower density and proportion of oligodendrocyte lineage cells and NogoA+ oligodendrocytes expressing MYRF in chronically demyelinated lesions compared to remyelinated shadow plaques. The relative scarcity of oligodendrocyte lineage cells expressing MYRF in demyelinated MS lesions demonstrates, for the first time, that chronic lesions lack oligodendrocytes that express this necessary transcription factor for remyelination and supports the notion that a failure to fully differentiate underlies remyelination failure.
Journal of Neuroscience Research | 2014
Femke Streijger; Jae H.T. Lee; G.J. Duncan; M.T.L. Ng; Peggy Assinck; Tim Bhatnagar; Ward T. Plunet; Wolfram Tetzlaff; Brian K. Kwon
Because of the complex, multifaceted nature of spinal cord injury (SCI), it is widely believed that a combination of approaches will be superior to individual treatments. Therefore, we employed a rat model of cervical SCI to evaluate the combination of four noninvasive treatments that individually have been reported to be effective for acute SCI during clinically relevant therapeutic time windows. These treatments included ghrelin, ibuprofen, C16, and ketogenic diet (KD). These were selected not only because of their previously reported efficacy in SCI models but also for their potentially different mechanisms of action. The administration of ghrelin, ibuprofen, C16, and KD several hours to days postinjury was based on previous observations by others that each treatment had profound effects on the pathophysiology and functional outcome following SCI. Here we showed that, with the exception of a modest improvement in performance on the Montoya staircase test at 8–10 weeks postinjury, the combinatorial treatment with ghrelin, ibuprofen, C16, and KD did not result in any significant improvements in the rearing test, grooming test, or horizontal ladder. Histologic analysis of the spinal cords did not reveal any significant differences in tissue sparing between treatment and control groups. Although single approaches of ghrelin, ibuprofen, C16, and KD have been reported to be beneficial after SCI, our results show that the combination of the four interventions did not confer significant functional or histological improvements in a cervical model of SCI. Possible interactions among the treatments may have negated their beneficial effects, emphasizing the challenges that have to be addressed when considering combinatorial drug therapies for SCI.
Muscle & Nerve | 2015
Huayi Xing; Mouwang Zhou; Peggy Assinck; Nan Liu
Introduction: Electrical stimulation is often used to prevent muscle atrophy and preserve contractile function, but its effects on the satellite cell population after nerve injury are not well understood. In this study we aimed to determine whether satellite cell differentiation is affected by electrical stimulation after nerve crush. Methods: The sciatic nerves of Sprague‐Dawley (SD) rats were crushed. Half of the injured rats received daily electrical stimulation of the gastrocnemius muscle, and the others did not. Tests for detecting paired box protein 7 (Pax7), myogenic differentiation antigen (MyoD), embryonic myosin heavy chain (eMyHC), and force production were performed 2, 4, and 6 weeks after injury. Results: More Pax7+/MyoD+ nuclei in stimulated muscles were observed than in non‐stimulated muscles. eMyHC expression was elevated in stimulated muscles and correlated positively with enhanced force production. Conclusions: Increased satellite cell differentiation is correlated with preserved muscle function in response to electrical stimulation after nerve injury. Muscle Nerve 51: 400–411, 2015
The Journal of Neuroscience | 2014
Greg J. Duncan; Peggy Assinck; Brett J. Hilton
Spinal cord injury (SCI) in the mammalian CNS results in the formation of a glial scar around the lesion site ([Fig. 1][1] A ). The scar limits axon regeneration but it also serves a protective role by sequestering inflammatory cells to the lesion center, reducing tissue damage ([Herrmann et al.,