Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason R. Stokes is active.

Publication


Featured researches published by Jason R. Stokes.


Journal of Colloid and Interface Science | 2011

Particle interactions in kaolinite suspensions and corresponding aggregate structures

Vishal Gupta; Marc A. Hampton; Jason R. Stokes; Anh V. Nguyen; Jan D. Miller

The surface charge densities of the silica face surface and the alumina face surface of kaolinite particles, recently determined from surface force measurements using atomic force microscopy, show a distinct dependence on the pH of the system. The silica face was found to be negatively charged at pH>4, whereas the alumina face surface was found to be positively charged at pH<6, and negatively charged at pH>8. The surface charge densities of the silica face and the alumina face were utilized in this study to determine the interaction energies between different surfaces of kaolinite particles. Results indicate that the silica face-alumina face interaction is dominant for kaolinite particle aggregation at low pH. This face-face association increases the stacking of kaolinite layers, and thereby promotes the edge-face (edge-silica face and edge-alumina face) and face-face (silica face-alumina face) associations with increasing pH, and hence the maximum shear-yield stress at pH 5-5.5. With further increase in pH, the face-face and edge-face association decreases due to increasing surface charge density on the silica face and the edge surfaces, and decreasing surface charge density on the alumina face. At high pH, all kaolinite surfaces become negatively charged, kaolinite particles are dispersed, and the suspension is stabilized. The face-face association at low pH has been confirmed from cryo-SEM images of kaolinite aggregates taken from suspension which show that the particles are mostly organized in a face-face and edge-face manner. At higher pH conditions, the cryo-SEM images of the kaolinite aggregates reveal a lower degree of consolidation and the edge-edge association is evident.


Journal of Rheology | 2004

Influence of particle modulus on the rheological properties of agar microgel suspensions

S. Adams; William J. Frith; Jason R. Stokes

The linear viscoelastic and steady shear flow properties of high phase volume suspensions of a range of agar microgel particles have been measured and are found to depend upon the deformability (or modulus) of the particles. Agar concentrations in the range 0.5–5 wt % are utilized, giving a range of particle modulus spanning 2.4–185 kPa. On increasing the particle modulus, in suspensions with phase volumes above maximum packing, the storage modulus increases by two orders of magnitude although the loss tangent (tan δ) also increases due to increasing viscous dissipation. The flow properties of the suspensions at high shear stresses also showed significant differences due to changing particle rigidity. The suspensions containing the hardest particles are found to display limited evidence of shear-thickening behavior at high stresses, while those containing the softest particles continue to shear thin. A high-shear plateau in the viscosity is observed for suspensions with particles of medium rigidity. The s...


Colloids and Surfaces B: Biointerfaces | 2010

Influence of ionic strength changes on the structure of pre-adsorbed salivary films. A response of a natural multi-component layer

Lubica Macakova; Gleb E. Yakubov; Mark Anthony Plunkett; Jason R. Stokes

Salivary films coating oral surfaces are critically important for oral health. This study focuses on determining the underlying nature of this adsorbed film and how it responds to departures from physiological conditions due to changes in ionic strength. Under physiological conditions, it is found that pre-adsorbed in vitro salivary film on hydrophobic surfaces is present as a highly hydrated viscoelastic layer. We follow the evolution of this film in terms of its effective thickness, hydration and viscoelastic properties, as well as adsorbed mass of proteins, using complementary surface characterisation methods: a Surface Plasmon Resonance (SPR) and a Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). Our results support a heterogeneous model for the structure of the salivary film with an inner dense anchoring layer and an outer highly extended hydrated layer. Further swelling of the film was observed upon decreasing the salt concentration down to 1mM NaCl. However, upon exposure to deionised water, a collapse of the film occurs that was associated with the loss of water contained within the adsorbed layer. We suggest that the collapse in deionised water is driven by an onset of electrostatic attraction between different parts of the multi-component salivary film. It is anticipated that such changes could also occur when the oral cavity is exposed to food, beverage, oral care and pharmaceutical formulations where drastic changes to the structural integrity of the film is likely to have implications on oral health, sensory perception and product performance.


Langmuir | 2011

Lubrication, adsorption, and rheology of aqueous polysaccharide solutions.

Jason R. Stokes; Lubica Macakova; Agnieszka Chojnicka-Paszun; Cornelis G. De Kruif; Harmen H. J. de Jongh

Aqueous lubrication is currently at the forefront of tribological research due to the desire to learn and potentially mimic how nature lubricates biotribological contacts. We focus here on understanding the lubrication properties of naturally occurring polysaccharides in aqueous solution using a combination of tribology, adsorption, and rheology. The polysaccharides include pectin, xanthan gum, gellan, and locus bean gum that are all widely used in food and nonfood applications. They form rheologically complex fluids in aqueous solution that are both shear thinning and elastic, and their normal stress differences at high shear rates are found to be characteristic of semiflexible/rigid molecules. Lubrication is studied using a ball-on-disk tribometer with hydrophobic elastomer surfaces, mimicking biotribological contacts, and the friction coefficient is measured as a function of speed across the boundary, mixed, and hydrodynamic lubrication regimes. The hydrodynamic regime, where the friction coefficient increases with increasing lubricant entrainment speed, is found to depend on the viscosity of the polysaccharide solutions at shear rates of around 10(4) s(-1). The boundary regime, which occurs at the lowest entrainment speeds, depends on the adsorption of polymer to the substrate. In this regime, the friction coefficient for a rough substrate (400 nm rms roughness) is dependent on the dry mass of polymer adsorbed to the surface (obtained from surface plasmon resonance), while for a smooth substrate (10 nm rms roughness) the friction coefficient is strongly dependent on the hydrated wet mass of adsorbed polymer (obtained from quartz crystal microbalance, QCM-D). The mixed regime is dependent on both the adsorbed film properties and lubricants viscosity at high shear rates. In addition, the entrainment speed where the friction coefficient is a minimum, which corresponds to the transition between the hydrodynamic and mixed regime, correlates linearly with the ratio of the wet mass and viscosity at ∼10(4) s(-1) for the smooth surface. These findings are independent of the different polysaccharides used in the study and their different viscoelastic flow properties.


Journal of Fluid Mechanics | 2001

Swirling flow of viscoelastic fluids. Part 1. Interaction between inertia and elasticity

Jason R. Stokes; Lachlan Graham; Nicholas J. Lawson; David V. Boger

A torsionally driven cavity, consisting of a fully enclosed cylinder with rotating bottom lid, is used to examine the confined swirling flow of low-viscosity Boger fluids for situations where inertia dominates the flow field. Flow visualization and the optical technique of particle image velocimetry (PIV) are used to examine the effect of small amounts of fluid elasticity on the phenomenon of vortex breakdown. Low-viscosity Boger fluids are used which consist of dilute concentrations of high molecular weight polyacrylamide or semi-dilute concentrations of xanthan gum in a Newtonian solvent. The introduction of elasticity results in a 20% and 40% increase in the minimum critical aspect ratio required for vortex breakdown to occur using polyacrylamide and xanthan gum, respectively, at concentrations of 45 p.p.m. When the concentrations of either polyacrylamide or xanthan gum are raised to 75 p.p.m., vortex breakdown is entirely suppressed for the cylinder aspect ratios examined. Radial and axial velocity measurements along the axial centreline show that the alteration in existence domain is linked to a decrease in the magnitude of the peak in axial velocity along the central axis. The minimum peak axial velocities along the central axis for the 75 p.p.m. polyacrylamide and 75 p.p.m. xanthan gum Boger fluids are 67% and 86% lower in magnitude, respectively, than for the Newtonian fluid at Reynolds number of Re [approximate] 1500–1600. This decrease in axial velocity is associated with the interaction of elasticity in the governing boundary on the rotating base lid and/or the interaction of extensional viscosity in areas with high velocity gradients. The low-viscosity Boger fluids used in this study are rheologically characterized and the steady complex flow field has well-defined boundary conditions. Therefore, the results will allow validation of non-Newtonian constitutive models in a numerical model of a torsionally driven cavity flow.


Journal of Rheology | 2005

On the gap error in parallel plate rheometry that arises from the presence of air when zeroing the gap

Georgina A. Davies; Jason R. Stokes

When zeroing the gap between two parallel plates, the squeeze flow of air results in a detectable normal force at a finite height that is misinterpreted in rheometry as an indicator for the zero gap position. This leads to a substantial gap error using well-aligned parallel plates that is accurately predicted using Stefan’s equation for squeeze flow. Minimizing or accounting for this error enables accurate rheological measurements to be performed in torsional flow using the parallel plate geometry at narrow gap heights, thus allowing shear rates of over 105s−1 to be achieved.


Proceedings of the Institution of Mechanical Engineers. Part J, Journal of engineering tribology | 2006

Rolling and sliding friction in compliant, lubricated contact

J. de Vicente; Jason R. Stokes; H. A. Spikes

Abstract Friction is investigated in a rolling-sliding, lubricated, steel ball on elastomer flat contact. Two different types of friction are identified: rolling friction, which results from the movement of the surfaces relative to the contact, and sliding or interfacial friction, which arises from relative motion of the two contacting surfaces. A novel experimental technique is described to measure these two types of friction simultaneously in a single test. This enables separate rolling and interfacial ‘Stribeck-type’ friction curves to be produced for Newtonian lubricants. These curves are compared with theoretical predictions of friction. The results show that rolling friction originates primarily from two sources: Poiseuille flow of lubricant in the contact and elastic hysteresis. There are also two main types of interfacial friction; due to Couette flow and solid surface adhesion. For compliant elastomer-on-steel contacts, rolling friction forms a significant proportion of the total friction even at quite high slide-roll ratios.


Journal of Rheology | 2001

Phase-separated biopolymer mixture rheology: Prediction using a viscoelastic emulsion model

Jason R. Stokes; Bettina Wolf; William J. Frith

The relationship between the morphology and rheology of phase-separated biopolymer mixtures is investigated. Biopolymer mixtures, which are utilized in the food industry for their textural and structuring properties, often phase separate and demix to form water-in-water emulsions. Controlling the morphology of biopolymer mixtures during flow processing and inducing gelation of one or both phases lead to products with novel microstructures and material properties [B. Wolf et al., Food Hydrocolloids 14, 217–225 (2000)]. An emulsion model [J. F. Palierne, Rheol. Acta 29, 204–214 (1990)], commonly used for the prediction of the linear viscoelastic properties of polymer blends, is used here to relate the rheology to the morphology of water-in-water emulsions. The system under investigation is a gelatin–maltodextrin mixture which phase separates at 60 °C for particular concentrations, characterized by a binodal curve, into a gelatin-rich and maltodextrin–rich phase. Emulsions with phase volumes of 10% and 30% w...


Journal of Fluid Mechanics | 2001

Swirling flow of viscoelastic fluids. Part 2. Elastic effects

Jason R. Stokes; Lachlan Graham; Nicholas J. Lawson; David V. Boger

A torsionally driven cavity has been used to examine the influence of elasticity on the swirling flow of constant-viscosity elastic liquids (Boger fluids). A wealth of phenomena is observed as the degree of inertia, elasticity and viscous forces are varied by using a range of low- to high-viscosity flexible polyacrylamide Boger fluids and a semi-rigid xanthan gum Boger fluid. As the inertia is decreased and elasticity increased by using polyacrylamide Boger fluids, the circulation rates for a ‘Newtonian-like’ secondary flow decreases until flow reversal occurs owing to the increasing magnitude of the primary normal stress difference. For each polyacrylamide fluid, the flow becomes highly unstable at a critical combination of Reynolds number and Weissenberg number resulting in a new time-dependent elastic instability. Each fluid is characterized by a dimensionless elasticity number and a correlation with Reynolds number is found for the occurrence of the instability. In the elasticity dominated flow of the polyacrylamide Boger fluids, the instability disrupts the flow dramatically and causes an increase in the peak axial velocity along the central axis by as much as 400%. In this case, the core vortex spirals with the primary motion of fluid and is observed in some cases at Reynolds numbers much less than unity. Elastic ‘reverse’ flow is observed for the xanthan gum Boger fluid at high Weissenberg number. As the Weissenberg number decreases, and Reynolds number increases, counter-rotating vortices flowing in the inertial direction form on the rotating lid. The peak axial velocity decreases for the xanthan gum Boger fluid with decreasing Weissenberg number. In addition, several constitutive models are used to describe accurately the rheological properties of the fluids used in this work in shear and extensional flow. This experimental investigation of a complex three-dimensional flow using well-characterized fluids provides the information necessary for the validation of non-Newtonian constitutive models through numerical analysis of the torsionally driven cavity flow.


Biomacromolecules | 2014

Micromechanics and Poroelasticity of Hydrated Cellulose Networks

Patricia Lopez-Sanchez; Mauricio Rincon; David K. Wang; S. Brulhart; Jason R. Stokes; Michael J. Gidley

The micromechanics of cellulose hydrogels have been investigated using a new rheological experimental approach, combined with simulation using a poroelastic constitutive model. A series of mechanical compression steps at different strain rates were performed as a function of cellulose hydrogel thickness, combined with small amplitude oscillatory shear after each step to monitor the viscoelasticity of the sample. During compression, bacterial cellulose hydrogels behaved as anisotropic materials with near zero Poissons ratio. The micromechanics of the hydrogels altered with each compression as water was squeezed out of the structure, and microstructural changes were strain rate-dependent, with increased densification of the cellulose network and increased cellulose fiber aggregation observed for slower compressive strain rates. A transversely isotropic poroelastic model was used to explain the observed micromechanical behavior, showing that the mechanical properties of cellulose networks in aqueous environments are mainly controlled by the rate of water movement within the structure.

Collaboration


Dive into the Jason R. Stokes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.H.H. Bongaerts

University of Bedfordshire

View shared research outputs
Top Co-Authors

Avatar

H. A. Spikes

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Long Yu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nichola Selway

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Turner

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge