Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mauricio Rincon Bonilla is active.

Publication


Featured researches published by Mauricio Rincon Bonilla.


Physical Chemistry Chemical Physics | 2011

Molecular transport in nanopores: a theoretical perspective

Suresh K. Bhatia; Mauricio Rincon Bonilla; D. Nicholson

Molecular transport in nanopores plays a central role in many emerging nanotechnologies for gas separation and storage, as well as in nanofluidics. Theories of the transport provide an understanding of the mechanisms that influence the transport and their interplay, and can lead to tractable models that can be used to advance these nanotechnologies through process analysis and optimisation. We review some of the most influential theories of fluid transport in small pores and confined spaces. Starting from the century old Knudsen formulation, the dusty gas model and several other related approaches that share a common point of departure in the Maxwell-Stefan diffusion equations are discussed. In particular, the conceptual basis of the models and the validity of the assumptions and simplifications necessary to obtain their final results are analysed. It is shown that the effect of adsorption is frequently either neglected, or treated on an ad hoc basis, such as through the division of the pore flux into gas-phase and surface diffusion contributions. Furthermore, while it is commonplace to assume that cross-sectional pressure is uniform, it is demonstrated that this violates the Gibbs-Duhem relation and that it is the chemical potential that essentially remains constant in the cross-section, as near-equilibrium density profiles are preserved even during transport. The Dusty Gas model and Maxwell-Stefan model for surface diffusion are analysed, and their strengths and weaknesses discussed, illustrating the use of conflicting choices of frames of reference in the former case, and the importance of assigning appropriate values for the binary diffusivity in the latter case. The oscillator model, developed in this laboratory, which is exact in the low density limit under diffuse reflection conditions, is shown to represent an advance on the classical Knudsen formula, although the latter frequently appears as a fundamental part of many transport models. The distributed friction model, also developed in this laboratory for the study of multi-component transport at any Knudsen number is discussed and compared with previous approaches. Finally, the outlook for theory and future research needs are discussed.


Materials | 2013

Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA

Mauricio Rincon Bonilla; Tobias Titze; Franz Schmidt; Dirk Mehlhorn; Christian Chmelik; Rustem Valiullin; Suresh K. Bhatia; Stefan Kaskel; Ryong Ryoo; Joerg Kaerger

The presence of mesopores in the interior of microporous particles may significantly improve their transport properties. Complementing previous macroscopic transient sorption experiments and pulsed field gradient NMR self-diffusion studies with such materials, the present study is dedicated to an in-depth study of molecular uptake and release on the individual particles of mesoporous zeolitic specimens, notably with samples of the narrow-pore structure types, CHA and LTA. The investigations are focused on determining the time constants and functional dependences of uptake and release. They include a systematic variation of the architecture of the mesopores and of the guest molecules under study as well as a comparison of transient uptake with blocked and un-blocked mesopores. In addition to accelerating intracrystalline mass transfer, transport enhancement by mesopores is found to be, possibly, also caused by a reduction of transport resistances on the particle surfaces.


Carbohydrate Polymers | 2017

Cellulose-pectin composite hydrogels: intermolecular interactions and material properties depend on order of assembly

Patricia Lopez-Sanchez; Marta Martínez-Sanz; Mauricio Rincon Bonilla; Dongjie Wang; Elliot P. Gilbert; Jason R. Stokes; Michael J. Gidley

Plant cell walls have a unique combination of strength and flexibility however, further investigations are required to understand how those properties arise from the assembly of the relevant biopolymers. Recent studies indicate that Ca2+-pectates can act as load-bearing components in cell walls. To investigate this proposed role of pectins, bioinspired wall models were synthesised based on bacterial cellulose containing pectin-calcium gels by varying the order of assembly of cellulose/pectin networks, pectin degree of methylesterification and calcium concentration. Hydrogels in which pectin-calcium assembly occurred prior to cellulose synthesis showed evidence for direct cellulose/pectin interactions from small-angle scattering (SAXS and SANS), had the densest networks and the lowest normal stress. The strength of the pectin-calcium gel affected cellulose structure, crystallinity and material properties. The results highlight the importance of the order of assembly on the properties of cellulose composite networks and support the role of pectin in the mechanics of cell walls.


Acta Biomaterialia | 2016

Micromechanical model of biphasic biomaterials with internal adhesion: Application to nanocellulose hydrogel composites

Mauricio Rincon Bonilla; Patricia Lopez-Sanchez; Michael J. Gidley; Jason R. Stokes

UNLABELLED The mechanical properties of hydrated biomaterials are non-recoverable upon unconfined compression if adhesion occurs between the structural components in the material upon fluid loss and apparent plastic behaviour. We explore these micromechanical phenomena by introducing an aggregation force and a critical yield pressure into the constitutive biphasic formulation for transversely isotropic tissues. The underlying hypothesis is that continual fluid pressure build-up during compression temporarily supresses aggregation. Once compression stops and the pressure falls below some critical value, internal aggregation occurs over a time scale comparable to the poroelastic time. We demonstrate this model by predicting the mechanical response of bacterial nanocellulose hydrogel composites, which are promising biomaterials and a structural mimetic for the plant cell wall. Cross-linking of cellulose by xyloglucan creates an extensional resistance and substantially increases the compressive modulus under large compression and densification. In comparison, incorporating non-crosslinking arabinoxylan into the hydrogel has little effect on its mechanics at the strain rates investigated. These results assist in elucidating the mechanical role of these polysaccharides in the complex plant cell wall structure. They also suggest xyloglucan is a suitable candidate to tailor the stiffness of nanocellulose hydrogels in biomaterial design, which includes modulating cell-adhesion in tissue engineering applications. The model and overall approach may be utilised to characterise and design a myriad of biomaterials and mammalian tissues, particularly those with a fibrillar structure. STATEMENT OF SIGNIFICANCE The mechanical properties of hydrated biomaterials can be non-recoverable upon compression due to increased adhesion occurring between the structural components in the material. Cellulose-hemicellulose composite hydrogels constitute a classical example of this phenomenon, since fibres can freely re-orient and adhere upon fluid loss to produce significant variations in the mechanical response to compression. Here, we model their micromechanics by introducing an aggregation force and a critical yield pressure into the constitutive formulation for transversely isotropic biphasic materials. The resulting model is easy to implement for routine characterization of this type of hydrated biomaterials through unconfined compression testing and produces physically meaningful and reproducible mechanical parameters.


Journal of Experimental Botany | 2016

Mapping nano-scale mechanical heterogeneity of primary plant cell walls

Gleb E. Yakubov; Mauricio Rincon Bonilla; Huaying Chen; Monika S. Doblin; Antony Bacic; Michael J. Gidley; Jason R. Stokes

Highlight Micromechanical maps on three plant systems universally reveal ‘soft’ and ‘hard’ domains on the cell wall surface; the observed micrometre-level spatial heterogeneity may be significant for cell growth and morphogenesis.


Carbohydrate Polymers | 2016

Pectin impacts cellulose fibre architecture and hydrogel mechanics in the absence of calcium

Patricia Lopez-Sanchez; Marta Martínez-Sanz; Mauricio Rincon Bonilla; Dongjie Wang; Cherie T. Walsh; Elliot P. Gilbert; Jason R. Stokes; Michael J. Gidley

Pectin is a major polysaccharide in many plant cell walls and recent advances indicate that its role in wall mechanics is more important than previously thought. In this work cellulose hydrogels were synthesised in pectin solutions, as a biomimetic tool to investigate the influence of pectin on cellulose assembly and hydrogel mechanical properties. Most of the pectin (60-80%) did not interact at the molecular level with cellulose, as judged by small angle scattering techniques (SAXS and SANS). Despite the lack of strong interactions with cellulose, this pectin fraction impacted the mechanical properties of the hydrogels through poroelastic effects. The other 20-40% of pectin (containing neutral sugar sidechains) was able to interact intimately with cellulose microfibrils at the point of assembly. These results support the need to revise the role of pectin in cell wall architecture and mechanics, and; furthermore they assist the design of cellulose-based products through controlling the viscoelasticity of the fluid phase.


Langmuir | 2012

Multicomponent effective medium-correlated random walk theory for the diffusion of fluid mixtures through porous media

Mauricio Rincon Bonilla; Suresh K. Bhatia

Molecular transport in nanoconfined spaces plays a key role in many emerging technologies for gas separation and storage, as well as in nanofluidics. The infiltration of fluid mixtures into the voids of porous frameworks having complex topologies is common place to these technologies, and optimizing their performance entails developing a deeper understanding of how the flow of these mixtures is affected by the morphology of the pore space, particularly its pore size distribution and pore connectivity. Although several techniques have been developed for the estimation of the effective diffusivity characterizing the transport of single fluids through porous materials, this is not the case for fluid mixtures, where the only alternatives rely on a time-consuming solution of the pore network equations or adaptations of the single fluid theories which are useful for a limited type of systems. In this paper, a hybrid multicomponent effective medium-correlated random walk theory for the calculation of the effective transport coefficients matrix of fluid mixtures diffusing through porous materials is developed. The theory is suitable for those systems in which component fluxes at the single pore level can be related to the potential gradients of the different species through linear flux laws and corresponds to a generalization of the classical single fluid effective medium theory for the analysis of random resistor networks. Comparison with simulation of the diffusion of binary CO(2)/H(2)S and ternary CO(2)/H(2)S/C(3)H(8) gas mixtures in membranes modeled as large networks of randomly oriented pores with both continuous and discrete pore size distributions demonstrates the power of the theory, which was tested using the well-known generalized Maxwell-Stefan model for surface diffusion at the single pore level.


Scientific Reports | 2018

Mucin gel assembly is controlled by a collective action of non-mucin proteins, disulfide bridges, Ca 2+ -mediated links, and hydrogen bonding

Oliver W. Meldrum; Gleb E. Yakubov; Mauricio Rincon Bonilla; Omkar Deshmukh; Michael A. McGuckin; Michael J. Gidley

Mucus is characterized by multiple levels of assembly at different length scales which result in a unique set of rheological (flow) and mechanical properties. These physical properties determine its biological function as a highly selective barrier for transport of water and nutrients, while blocking penetration of pathogens and foreign particles. Altered integrity of the mucus layer in the small intestine has been associated with a number of gastrointestinal tract pathologies such as Crohn’s disease and cystic fibrosis. In this work, we uncover an intricate hierarchy of intestinal mucin (Muc2) assembly and show how complex rheological properties emerge from synergistic interactions between mucin glycoproteins, non-mucin proteins, and Ca2+. Using a novel method of mucus purification, we demonstrate the mechanism of assembly of Muc2 oligomers into viscoelastic microscale domains formed via hydrogen bonding and Ca2+-mediated links, which require the joint presence of Ca2+ ions and non-mucin proteins. These microscale domains aggregate to form a heterogeneous yield stress gel-like fluid, the macroscopic rheological properties of which are virtually identical to that of native intestinal mucus. Through proteomic analysis, we short-list potential protein candidates implicated in mucin assembly, thus paving the way for identifying the molecules responsible for the physiologically critical biophysical properties of mucus.


Food and Bioprocess Technology | 2018

Modelling of Thermal Sterilisation of High-Moisture Snack Foods: Feasibility Analysis and Optimization

Jing Ai; Torsten Witt; Michael J. Gidley; Mark S. Turner; Jason R. Stokes; Mauricio Rincon Bonilla

High-moisture snacks, such as steamed buns and rice cakes, are traditional and popular in Asian countries. However, their shelf life is short, primarily due to microbial spoilage. Current manufacturing methods address this shortcoming through the use of chemical preservatives. To satisfy consumers’ demand for preservative-free food, thermal sterilisation of a model high-moisture snack (steamed rice cakes) is investigated in this work. Bacillus cereus spores are heat-resistant pathogens typically found in rice products; hence, they constitute a suitable candidate to assess the effectiveness of thermal sterilisation. A validated combination of predicted temperature profile of rice cakes based on thermal properties extracted experimentally with thermal inactivation kinetics of B. cereus spores allows us to assess the sensitivity of processing conditions to sterilisation efficiency. Using both experimentation and modelling, it is shown that enhancement of heat transfer by improving convection from the heating medium (either water or steam) has a limited effect on inactivation due to the intrinsic kinetics of spore inactivation.


Journal of Physical Chemistry C | 2014

Understanding Adsorption and Transport of Light Gases in Hierarchical Materials Using Molecular Simulation and Effective Medium Theory

Mauricio Rincon Bonilla; Rustem Valiullin; Jörg Kärger; Suresh K. Bhatia

Collaboration


Dive into the Mauricio Rincon Bonilla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongjie Wang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Elliot P. Gilbert

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuechao Gao

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge