Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason W. Bennett is active.

Publication


Featured researches published by Jason W. Bennett.


Science | 2011

Live Attenuated Malaria Vaccine Designed to Protect through Hepatic CD8+ T Cell Immunity

Judith E. Epstein; K. Tewari; Kirsten E. Lyke; B. K. L. Sim; Peter F. Billingsley; Matthew B. Laurens; Anusha Gunasekera; Sumana Chakravarty; Eric R. James; Martha Sedegah; Adam Richman; Soundarapandian Velmurugan; Sharina Reyes; Ming Lin Li; Kathryn Tucker; Adriana Ahumada; Adam Ruben; Tao Li; Richard E. Stafford; Abraham G. Eappen; C. Tamminga; Jason W. Bennett; Christian F. Ockenhouse; Jittawadee Murphy; J. Komisar; N. Thomas; Mark Loyevsky; Ashley Birkett; Christopher V. Plowe; C. Loucq

The efficacy of a sporozoite-based malaria vaccine is tested in humans, nonhuman primates, and mice. Our goal is to develop a vaccine that sustainably prevents Plasmodium falciparum (Pf) malaria in ≥80% of recipients. Pf sporozoites (PfSPZ) administered by mosquito bites are the only immunogens shown to induce such protection in humans. Such protection is thought to be mediated by CD8+ T cells in the liver that secrete interferon-γ (IFN-γ). We report that purified irradiated PfSPZ administered to 80 volunteers by needle inoculation in the skin was safe, but suboptimally immunogenic and protective. Animal studies demonstrated that intravenous immunization was critical for inducing a high frequency of PfSPZ-specific CD8+, IFN-γ–producing T cells in the liver (nonhuman primates, mice) and conferring protection (mice). Our results suggest that intravenous administration of this vaccine will lead to the prevention of infection with Pf malaria.


The New England Journal of Medicine | 2017

A Recombinant Vesicular Stomatitis Virus Ebola Vaccine - Preliminary Report.

Jason Regules; John Beigel; Kristopher M. Paolino; Jocelyn Voell; Amy R. Castellano; Paula Muñoz; James E. Moon; Richard C. Ruck; Jason W. Bennett; Patrick S. Twomey; Ramiro L. Gutiérrez; Shon Remich; Holly R. Hack; Meagan L. Wisniewski; Matthew Josleyn; Steven A. Kwilas; Nicole M. Van Deusen; Olivier Tshiani Mbaya; Yan Zhou; Daphne Stanley; Robin L. Bliss; Deborah Cebrik; Kirsten S. Smith; Meng Shi; Julie E. Ledgerwood; Barney S. Graham; Nancy J. Sullivan; Linda L. Jagodzinski; Sheila A. Peel; Judie B. Alimonti

Background The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication‐competent, recombinant vesicular stomatitis virus (rVSV)–based vaccine candidate designed to prevent EVD. Methods We conducted two phase 1, placebo‐controlled, double‐blind, dose‐escalation trials of an rVSV‐based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV‐ZEBOV vaccine (3 million plaque‐forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. Results The most common adverse events were injection‐site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme‐linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV‐Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. Conclusions This Ebola vaccine candidate elicited anti‐Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses. (Funded by the National Institutes of Health and others; rVSV&Dgr;G‐ZEBOV‐GP ClinicalTrials.gov numbers, NCT02269423 and NCT02280408.)


The New England Journal of Medicine | 2013

Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria.

Jason W. Bennett; Brandon S. Pybus; Anjali Yadava; Donna Tosh; Jason Sousa; William F. McCarthy; Gregory Deye; Victor Melendez; Christian F. Ockenhouse

Primaquine is used to eradicate the hepatic or hypnozoite form of Plasmodium vivax that may lead to relapse of infection. Host genetic factors may play a role in the activity of primaquine therapy.


PLOS ONE | 2013

DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

Ilin Chuang; Martha Sedegah; Susan Cicatelli; Michele Spring; Mark E. Polhemus; Cindy Tamminga; Noelle B. Patterson; Melanie L. Guerrero; Jason W. Bennett; Shannon McGrath; Harini Ganeshan; Maria Belmonte; Fouzia Farooq; Esteban Abot; Jo Glenna Banania; Jun Huang; Rhonda Newcomer; Lisa Rein; Dianne Litilit; Nancy O. Richie; Chloe Wood; Jittawadee Murphy; Robert W. Sauerwein; Cornelus C. Hermsen; Andrea McCoy; Edwin Kamau; James F. Cummings; Jack Komisar; Awalludin Sutamihardja; Meng Shi

Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. Trial Registration ClinicalTrials.govNCT00870987.


PLOS Neglected Tropical Diseases | 2016

Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy

Jason W. Bennett; Anjali Yadava; Donna Tosh; Jetsumon Sattabongkot; Jack Komisar; Lisa A. Ware; William F. McCarthy; Jessica Cowden; Jason Regules; Michele Spring; Kristopher M. Paolino; Joshua D. Hartzell; James F. Cummings; Thomas L. Richie; Joanne M. Lumsden; Edwin Kamau; Jittawadee Murphy; Cynthia Lee; Falgunee K. Parekh; Ashley J. Birkett; Joe Cohen; W. Ripley Ballou; Mark E. Polhemus; Yannick Vanloubbeeck; Johan Vekemans; Christian F. Ockenhouse

Background A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. Methods We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15μg, 30μg, or 60μg respectively of VMP001, all formulated in 500μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. Results The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. Significance This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.


Clinical and Vaccine Immunology | 2013

Transgenic Parasites Stably Expressing Full-Length Plasmodium falciparum Circumsporozoite Protein as a Model for Vaccine Down-Selection in Mice Using Sterile Protection as an Endpoint

Michael D. Porter; Jennifer Nicki; Christopher D. Pool; Margot DeBot; Ratish M. Illam; Clara Brando; Brooke Bozick; Patricia De La Vega; Divya Angra; Roberta Spaccapelo; Andrea Crisanti; Jittawadee Murphy; Jason W. Bennett; Robert Schwenk; Christian F. Ockenhouse; Sheetij Dutta

ABSTRACT Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations.


Infection and Immunity | 2011

Evaluation of the Safety and Immunogenicity in Rhesus Monkeys of a Recombinant Malaria Vaccine for Plasmodium vivax with a Synthetic Toll-Like Receptor 4 Agonist Formulated in an Emulsion‡

Joanne M. Lumsden; Sathit Pichyangkul; Utaiwan Srichairatanakul; Kosol Yongvanitchit; Amporn Limsalakpetch; Saule Nurmukhambetova; Jennifer Klein; Sylvie Bertholet; Thomas S. Vedvick; Steven G. Reed; Jetsumon Sattabongkot; Jason W. Bennett; Mark E. Polhemus; Christian F. Ockenhouse; Randall F. Howard; Anjali Yadava

ABSTRACT Plasmodium vivax is the major cause of malaria outside sub-Saharan Africa and inflicts debilitating morbidity and consequent economic impacts in developing countries. In order to produce a P. vivax vaccine for global use, we have previously reported the development of a novel chimeric recombinant protein, VMP001, based on the circumsporozoite protein (CSP) of P. vivax. Very few adjuvant formulations are currently available for human use. Our interest is to evaluate second-generation vaccine formulations to identify novel combinations of adjuvants capable of inducing strong, long-lasting immune responses. In this study rhesus monkeys were immunized intramuscularly three times with VMP001 in combination with a stable emulsion (SE) or a synthetic Toll-like receptor 4 (TLR4) agonist (glucopyranosyl lipid A [GLA]) in SE (GLA-SE). Sera and peripheral blood mononuclear cells (PBMCs) were tested for the presence of antigen-specific humoral and cellular responses, respectively. All groups of monkeys generated high titers of anti-P. vivax IgG antibodies, as detected by enzyme-linked immunosorbent assays (ELISAs) and immunofluorescence assays. In addition, all groups generated a cellular immune response characterized by antigen-specific CD4+ T cells secreting predominantly interleukin-2 (IL-2) and lesser amounts of tumor necrosis factor (TNF). We conclude that the combination of VMP001 and GLA-SE is safe and immunogenic in monkeys and may serve as a potential second-generation vaccine candidate against P. vivax malaria.


Human Vaccines & Immunotherapeutics | 2013

Human adenovirus 5-vectored Plasmodium falciparum NMRC-M3V-Ad-PfCA vaccine encoding CSP and AMA1 is safe, well-tolerated and immunogenic but does not protect against controlled human malaria infection

Cindy Tamminga; Martha Sedegah; Santina Maiolatesi; Charlotte Fedders; Sharina Reyes; Anatalio Reyes; Carlos Vasquez; Yolanda Alcorta; Ilin Chuang; Michele Spring; Michael Kavanaugh; Harini Ganeshan; Jun Huang; Maria Belmonte; Esteban Abot; Arnel Belmonte; Jo-Glenna Banania; Fouzia Farooq; Jittawadee Murphy; Jack Komisar; Nancy O. Richie; Jason W. Bennett; Keith Limbach; Noelle B. Patterson; Joseph T. Bruder; Meng Shi; Edward Miller; Sheetij Dutta; Carter Diggs; Lorraine Soisson

Background: In a prior study, a DNA prime / adenovirus boost vaccine (DNA/Ad) expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) (NMRC-M3V-D/Ad-PfCA Vaccine) induced 27% protection against controlled human malaria infection (CHMI). To investigate the contribution of DNA priming, we tested the efficacy of adenovirus vaccine alone (NMRC-M3V-Ad-PfCA ) in a Phase 1 clinical trial. Methodology/Principal Findings: The regimen was a single intramuscular injection with two non-replicating human serotype 5 adenovectors encoding CSP and AMA1, respectively. One x 1010 particle units of each construct were combined prior to administration. The regimen was safe and well-tolerated. Four weeks later, 18 study subjects received P. falciparum CHMI administered by mosquito bite. None were fully protected although one showed delayed onset of parasitemia. Antibody responses were low, with geometric mean CSP ELISA titer of 381 (range < 50–1626) and AMA1 ELISA of 4.95 µg/mL (range 0.2–38). Summed ex vivo IFN-γ ELISpot responses to overlapping peptides were robust, with geometric mean spot forming cells/million peripheral blood mononuclear cells [sfc/m] for CSP of 273 (range 38–2550) and for AMA1 of 1303 (range 435–4594). CD4+ and CD8+ T cell IFN-γ responses to CSP were positive by flow cytometry in 25% and 56% of the research subjects, respectively, and to AMA1 in 94% and 100%, respectively. Significance: In contrast to DNA/Ad, Ad alone did not protect against CHMI despite inducing broad, cell-mediated immunity, indicating that DNA priming is required for protection by the adenovirus-vectored vaccine. ClinicalTrials.gov Identifier: NCT00392015.


Malaria Journal | 2013

Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1 (MSP142) administered intramuscularly with adjuvant system AS01

Nekoye Otsyula; Evelina Angov; Elke S. Bergmann-Leitner; Margaret Koech; Farhat Khan; Jason W. Bennett; Lucas Otieno; James F. Cummings; Ben Andagalu; Donna Tosh; John N. Waitumbi; Nancy O. Richie; Meng Shi; Lori Miller; Walter Otieno; Godfrey Allan Otieno; Lisa A. Ware; Brent House; Olivier Godeaux; Marie-Claude Dubois; Bernhards Ogutu; W. Ripley Ballou; Lorraine Soisson; Carter Diggs; Joe Cohen; Mark E. Polhemus; D. Gray Heppner; Christian F. Ockenhouse; Michele Spring

BackgroundThe development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites.MethodsTwo Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator.ResultsIn these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites.ConclusionsGiven that the primary effector mechanism for blood stage vaccine targets is humoral, the antibody responses demonstrated to this vaccine candidate, both quantitative (total antibody titres) and qualitative (functional antibodies inhibiting parasite growth) warrant further consideration of its application in endemic settings.Trial registrationsClinical Trials NCT00666380


Vaccine | 2012

Evaluation of immune responses to a Plasmodium vivax CSP-based recombinant protein vaccine candidate in combination with second-generation adjuvants in mice.

Joanne M. Lumsden; Saule Nurmukhambetova; Jennifer Klein; Jetsumon Sattabongkot; Jason W. Bennett; Sylvie Bertholet; Christopher B. Fox; Steven G. Reed; Christian F. Ockenhouse; Randall F. Howard; Mark E. Polhemus; Anjali Yadava

Plasmodium vivax is the major cause of malaria outside of sub-Saharan Africa and causes morbidity and results in significant economic impact in developing countries. In order to produce a P. vivax vaccine for global use, we have previously reported the development of VMP001, based on the circumsporozoite protein (CSP) of P. vivax. Our interest is to evaluate second-generation vaccine formulations to identify novel combinations of adjuvants capable of inducing strong, long-lasting immune responses. In this study, groups of C57BL/6J mice were immunized subcutaneously three times with VMP001 emulsified with synthetic TLR4 (GLA) or TLR7/8 (R848) agonist in stable emulsion (SE), a combination of the TLR4 and TLR7/8 agonists, or SE alone. Sera and splenocytes were tested for the presence of antigen-specific humoral and cellular responses, respectively. All groups of mice generated high titers of anti-P. vivax IgG antibodies as detected by ELISA and immunofluorescence assay. GLA-SE promoted a shift in the antibody response to a Th1 profile, as demonstrated by the change in IgG2c/IgG1 ratio. In addition, GLA-SE induced a strong cellular immune response characterized by multi-functional, antigen-specific CD4(+) T cells secreting IL-2, TNF and IFN-γ. In contrast, mice immunized with SE or R848-SE produced low numbers of antigen-specific CD4(+) T cells, and these T cells secreted IL-2 and TNF, but not IFN-γ. Finally, R848-SE did not enhance the immune response compared to GLA-SE alone. Based on these results, we conclude that the combination of VMP001 and GLA-SE is highly immunogenic in mice and may serve as a potential second-generation vaccine candidate against vivax malaria.

Collaboration


Dive into the Jason W. Bennett's collaboration.

Top Co-Authors

Avatar

Christian F. Ockenhouse

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Anjali Yadava

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Jittawadee Murphy

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Mark E. Polhemus

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Meng Shi

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Michele Spring

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brandon S. Pybus

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Carter Diggs

United States Agency for International Development

View shared research outputs
Researchain Logo
Decentralizing Knowledge