Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jittawadee Murphy is active.

Publication


Featured researches published by Jittawadee Murphy.


Science | 2013

Protection Against Malaria by Intravenous Immunization with a Nonreplicating Sporozoite Vaccine

Robert A. Seder; Lee Jah Chang; Mary E. Enama; Kathryn L. Zephir; Uzma N. Sarwar; Ingelise J. Gordon; LaSonji A. Holman; Eric R. James; Peter F. Billingsley; Anusha Gunasekera; Adam Richman; Sumana Chakravarty; Anita Manoj; Soundarapandian Velmurugan; Minglin Li; Adam Ruben; Tao Li; Abraham G. Eappen; Richard E. Stafford; Sarah Plummer; Cynthia S. Hendel; Laura Novik; Pamela Costner; Floreliz Mendoza; Jamie G. Saunders; Martha Nason; Jason H. Richardson; Jittawadee Murphy; Silas A. Davidson; Thomas L. Richie

Malaria Sporozoite Vaccine Each year, hundreds of millions of people are infected with Plasmodium falciparum, the mosquito-borne parasite that causes malaria. A preventative vaccine is greatly needed. Seder et al. (p. 1359, published online 8 August; see the Perspective by Good) now report the results from a phase I clinical trial where subjects were immunized intravenously with a whole, attenuated sporozoite vaccine. Three of 9 subjects who received four doses and zero of 6 subjects who received five doses of the vaccine went on to develop malaria after controlled malaria infection. Both antibody titers and cellular immune responses correlated positively with the dose of vaccine received, suggesting that both arms of the adaptive immune response may have participated in the observed protection. Intravenous immunization with an attenuated whole malaria sporozoite vaccine protected volunteers in a phase I clinical trial. [Also see Perspective by Good] Consistent, high-level, vaccine-induced protection against human malaria has only been achieved by inoculation of Plasmodium falciparum (Pf) sporozoites (SPZ) by mosquito bites. We report that the PfSPZ Vaccine—composed of attenuated, aseptic, purified, cryopreserved PfSPZ—was safe and wel-tolerated when administered four to six times intravenously (IV) to 40 adults. Zero of six subjects receiving five doses and three of nine subjects receiving four doses of 1.35 × 105 PfSPZ Vaccine and five of six nonvaccinated controls developed malaria after controlled human malaria infection (P = 0.015 in the five-dose group and P = 0.028 for overall, both versus controls). PfSPZ-specific antibody and T cell responses were dose-dependent. These data indicate that there is a dose-dependent immunological threshold for establishing high-level protection against malaria that can be achieved with IV administration of a vaccine that is safe and meets regulatory standards.


Science | 2011

Live Attenuated Malaria Vaccine Designed to Protect through Hepatic CD8+ T Cell Immunity

Judith E. Epstein; K. Tewari; Kirsten E. Lyke; B. K. L. Sim; Peter F. Billingsley; Matthew B. Laurens; Anusha Gunasekera; Sumana Chakravarty; Eric R. James; Martha Sedegah; Adam Richman; Soundarapandian Velmurugan; Sharina Reyes; Ming Lin Li; Kathryn Tucker; Adriana Ahumada; Adam Ruben; Tao Li; Richard E. Stafford; Abraham G. Eappen; C. Tamminga; Jason W. Bennett; Christian F. Ockenhouse; Jittawadee Murphy; J. Komisar; N. Thomas; Mark Loyevsky; Ashley Birkett; Christopher V. Plowe; C. Loucq

The efficacy of a sporozoite-based malaria vaccine is tested in humans, nonhuman primates, and mice. Our goal is to develop a vaccine that sustainably prevents Plasmodium falciparum (Pf) malaria in ≥80% of recipients. Pf sporozoites (PfSPZ) administered by mosquito bites are the only immunogens shown to induce such protection in humans. Such protection is thought to be mediated by CD8+ T cells in the liver that secrete interferon-γ (IFN-γ). We report that purified irradiated PfSPZ administered to 80 volunteers by needle inoculation in the skin was safe, but suboptimally immunogenic and protective. Animal studies demonstrated that intravenous immunization was critical for inducing a high frequency of PfSPZ-specific CD8+, IFN-γ–producing T cells in the liver (nonhuman primates, mice) and conferring protection (mice). Our results suggest that intravenous administration of this vaccine will lead to the prevention of infection with Pf malaria.


PLOS ONE | 2013

DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

Ilin Chuang; Martha Sedegah; Susan Cicatelli; Michele Spring; Mark E. Polhemus; Cindy Tamminga; Noelle B. Patterson; Melanie L. Guerrero; Jason W. Bennett; Shannon McGrath; Harini Ganeshan; Maria Belmonte; Fouzia Farooq; Esteban Abot; Jo Glenna Banania; Jun Huang; Rhonda Newcomer; Lisa Rein; Dianne Litilit; Nancy O. Richie; Chloe Wood; Jittawadee Murphy; Robert W. Sauerwein; Cornelus C. Hermsen; Andrea McCoy; Edwin Kamau; James F. Cummings; Jack Komisar; Awalludin Sutamihardja; Meng Shi

Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. Trial Registration ClinicalTrials.govNCT00870987.


PLOS ONE | 2011

Adenovirus-5-Vectored P. falciparum Vaccine Expressing CSP and AMA1. Part B: Safety, Immunogenicity and Protective Efficacy of the CSP Component

Cindy Tamminga; Martha Sedegah; David P. Regis; Ilin Chuang; Judith E. Epstein; Michele Spring; Jose Mendoza-Silveiras; Shannon McGrath; Santina Maiolatesi; Sharina Reyes; Victoria Steinbeiss; Charlotte Fedders; Kathryn Smith; Brent House; Harini Ganeshan; Jennylynn Lejano; Esteban Abot; Glenna Banania; Renato Sayo; Fouzia Farooq; Maria Belmonte; Jittawadee Murphy; Jack Komisar; Jackie Williams; Meng Shi; Donald Brambilla; Nalini Manohar; Nancy O. Richie; Chloe Wood; Keith Limbach

Background A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge. Methodology/Principal Findings NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP). It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1) that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al). Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m]) that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m). CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb) to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected. Significance The NMRC-MV-Ad-PfC vaccine expressing CSP was safe and well tolerated given as two doses, but did not provide sterile protection. Trial Registration ClinicalTrials.gov NCT00392015


PLOS Neglected Tropical Diseases | 2016

Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy

Jason W. Bennett; Anjali Yadava; Donna Tosh; Jetsumon Sattabongkot; Jack Komisar; Lisa A. Ware; William F. McCarthy; Jessica Cowden; Jason Regules; Michele Spring; Kristopher M. Paolino; Joshua D. Hartzell; James F. Cummings; Thomas L. Richie; Joanne M. Lumsden; Edwin Kamau; Jittawadee Murphy; Cynthia Lee; Falgunee K. Parekh; Ashley J. Birkett; Joe Cohen; W. Ripley Ballou; Mark E. Polhemus; Yannick Vanloubbeeck; Johan Vekemans; Christian F. Ockenhouse

Background A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. Methods We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15μg, 30μg, or 60μg respectively of VMP001, all formulated in 500μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. Results The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. Significance This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.


Clinical and Vaccine Immunology | 2013

Transgenic Parasites Stably Expressing Full-Length Plasmodium falciparum Circumsporozoite Protein as a Model for Vaccine Down-Selection in Mice Using Sterile Protection as an Endpoint

Michael D. Porter; Jennifer Nicki; Christopher D. Pool; Margot DeBot; Ratish M. Illam; Clara Brando; Brooke Bozick; Patricia De La Vega; Divya Angra; Roberta Spaccapelo; Andrea Crisanti; Jittawadee Murphy; Jason W. Bennett; Robert Schwenk; Christian F. Ockenhouse; Sheetij Dutta

ABSTRACT Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations.


Human Vaccines & Immunotherapeutics | 2013

Human adenovirus 5-vectored Plasmodium falciparum NMRC-M3V-Ad-PfCA vaccine encoding CSP and AMA1 is safe, well-tolerated and immunogenic but does not protect against controlled human malaria infection

Cindy Tamminga; Martha Sedegah; Santina Maiolatesi; Charlotte Fedders; Sharina Reyes; Anatalio Reyes; Carlos Vasquez; Yolanda Alcorta; Ilin Chuang; Michele Spring; Michael Kavanaugh; Harini Ganeshan; Jun Huang; Maria Belmonte; Esteban Abot; Arnel Belmonte; Jo-Glenna Banania; Fouzia Farooq; Jittawadee Murphy; Jack Komisar; Nancy O. Richie; Jason W. Bennett; Keith Limbach; Noelle B. Patterson; Joseph T. Bruder; Meng Shi; Edward Miller; Sheetij Dutta; Carter Diggs; Lorraine Soisson

Background: In a prior study, a DNA prime / adenovirus boost vaccine (DNA/Ad) expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) (NMRC-M3V-D/Ad-PfCA Vaccine) induced 27% protection against controlled human malaria infection (CHMI). To investigate the contribution of DNA priming, we tested the efficacy of adenovirus vaccine alone (NMRC-M3V-Ad-PfCA ) in a Phase 1 clinical trial. Methodology/Principal Findings: The regimen was a single intramuscular injection with two non-replicating human serotype 5 adenovectors encoding CSP and AMA1, respectively. One x 1010 particle units of each construct were combined prior to administration. The regimen was safe and well-tolerated. Four weeks later, 18 study subjects received P. falciparum CHMI administered by mosquito bite. None were fully protected although one showed delayed onset of parasitemia. Antibody responses were low, with geometric mean CSP ELISA titer of 381 (range < 50–1626) and AMA1 ELISA of 4.95 µg/mL (range 0.2–38). Summed ex vivo IFN-γ ELISpot responses to overlapping peptides were robust, with geometric mean spot forming cells/million peripheral blood mononuclear cells [sfc/m] for CSP of 273 (range 38–2550) and for AMA1 of 1303 (range 435–4594). CD4+ and CD8+ T cell IFN-γ responses to CSP were positive by flow cytometry in 25% and 56% of the research subjects, respectively, and to AMA1 in 94% and 100%, respectively. Significance: In contrast to DNA/Ad, Ad alone did not protect against CHMI despite inducing broad, cell-mediated immunity, indicating that DNA priming is required for protection by the adenovirus-vectored vaccine. ClinicalTrials.gov Identifier: NCT00392015.


Clinical Infectious Diseases | 2012

Prolonged Protection Provided by a Single Dose of Atovaquone-Proguanil for the Chemoprophylaxis of Plasmodium falciparum Malaria in a Human Challenge Model

Gregory Deye; R. Scott Miller; Lori Miller; Carola Salas; Donna Tosh; Louis Macareo; Bryan L. Smith; Susan Fracisco; Emily G. Clemens; Jittawadee Murphy; Jason Sousa; J. Stephen Dumler; Alan J. Magill

BACKGROUND We conducted a randomized, placebo-controlled, double-blind trial to establish the efficacy of atovaquone-proguanil to prevent malaria with the goal of simulating weekly dosing in a human Plasmodium falciparum challenge model. METHODS Thirty volunteers randomly received 1 of the following dose regimens: (1) 250 milligrams of atovaquone and 100 milligrams of proguanil (250/100 milligrams) 1 day prior to infectious mosquito challenge (day -1), (2) 250/100 milligrams on day 4 after challenge, (3) 250/100 milligrams on day -7, (4) 500 milligrams of atovaquone and 200 milligrams of proguanil (500/200 milligrams) on day -7 or, (5) 1000 milligrams of atovaquone and 400 milligrams of proguanil (1000/400 milligrams) on day -7. All regimens included matching placebo such that all volunteers received identical pill numbers. Six volunteers served as open-label infectivity controls. Volunteers underwent mosquito sporozoite challenge with P. falciparum 3D7 strain. Follow-up consisted of serial microscopy and close clinical monitoring for 90 days. RESULTS Six of 6 infectivity controls developed parasitemia as expected. Two of 5 evaluable volunteers receiving 250/100 milligrams 7 days prior to challenge and 1 of 6 volunteers receiving 1000/400 milligrams 7 days prior to challenge were microscopically diagnosed with malaria. All other volunteers were protected. Atovaquone exposure (area under the curve) during liver stage development was low in 2 of 3 volunteers with prophylactic failure (423 and 199 ng/mL × days compared with a mean for protected volunteers of 1903 ng/mL × days), as was peak concentration (165 and 81 ng/mL compared with a mean of 594 ng/mL in volunteers with prophylactic success). Elimination half-life was short in volunteers with prophylactic failure (2.4, 2.0, and 3.3 days compared with a mean of 4.1 days in volunteers with prophylactic success). CONCLUSIONS Single-dose atovaquone-proguanil provides effective malaria chemoprophylaxis against P. falciparum challenge at dosing intervals supportive of weekly dosing. Postexposure prophylaxis 4 days after challenge was 100% effective.


Malaria Journal | 2012

Mosquito bisection as a variable in estimates of PCR-derived malaria sporozoite rates

Desmond H. Foley; Genelle Harrison; Jittawadee Murphy; Megan Dowler; Leopoldo M. Rueda; Richard C. Wilkerson

BackgroundHighly sensitive polymerase chain reaction (PCR) methods offer an alternative to the light microscopy examination of mosquito salivary glands for the determination of malaria sporozoite rates in wild caught female Anopheles. Removal of mosquito abdomens is assumed to eliminate false positives caused by malaria oocyst DNA in the midgut. This assumption has not been tested with current gold standard PCR assays, and for the variety of conditions that specimens could encounter in the laboratory and field.MethodsLaboratory Anopheles stephensi were used that had been infected with Plasmodium falciparum 6–7 days and 14 days post infection (p.i.), when oocysts only and oocysts + sporozoites, respectively, are developed. Mosquitoes were killed and immediately frozen, air dried before being frozen, or stored under humid conditions overnight before being frozen, to simulate a range of conditions in the field. Additionally, abdomens were removed anterior to, at, or posterior to the junction of the abdomen and thorax, and both portions were processed using a standard nested PCR of the small sub-unit nuclear ribosomal genes (ssrDNA) with products visualized on agarose gels.ResultsOverall, 4.1 % (4/97) of head + thorax samples that were 6–7 days p.i. gave apparent false positives for sporozoites, compared to 9.3 % (9/97) that were positive for abdomens. No positives (0/52) were obtained when similar specimens were bisected anterior to the junction of the thorax and abdomen, compared to 21.2 % (11/52) that were positive for posterior portions. Multiple bands were noted for positives from the ‘Frozen’ treatment and the rate of false negatives due to DNA degradation appears higher under the ‘Humid’ treatment. Reproducibility of results for the ‘Frozen’ treatment was 90 %.ConclusionsDespite the importance of specimen condition and the bisection step in determining sporozoite rates, little attention has been paid to them in the literature. Recommendations from this study are that: 1) care needs to be taken to reduce DNA degradation in the field; 2) mosquito abdomens be separated anterior to the junction of the thorax and abdomen; and 3) DNA sequencing of a subsample of positive results should be undertaken if possible.


Malaria Journal | 2014

Using infective mosquitoes to challenge monkeys with Plasmodium knowlesi in malaria vaccine studies

Jittawadee Murphy; Walter R. Weiss; David J. Fryauff; Megan Dowler; Tatyana Savransky; Cristina Stoyanov; Olga Muratova; Lynn Lambert; Sachy Orr-Gonzalez; Katie Zeleski; Jessica Hinderer; Michael P. Fay; Gyan Joshi; Robert W. Gwadz; Thomas L. Richie; Eileen Franke Villasante; Jason H. Richardson; Patrick E. Duffy; Jingyang Chen

BackgroundWhen rhesus monkeys (Macaca mulatta) are used to test malaria vaccines, animals are often challenged by the intravenous injection of sporozoites. However, natural exposure to malaria comes via mosquito bite, and antibodies can neutralize sporozoites as they traverse the skin. Thus, intravenous injection may not fairly assess humoral immunity from anti-sporozoite malaria vaccines. To better assess malaria vaccines in rhesus, a method to challenge large numbers of monkeys by mosquito bite was developed.MethodsSeveral species and strains of mosquitoes were tested for their ability to produce Plasmodium knowlesi sporozoites. Donor monkey parasitaemia effects on oocyst and sporozoite numbers and mosquito mortality were documented. Methylparaben added to mosquito feed was tested to improve mosquito survival. To determine the number of bites needed to infect a monkey, animals were exposed to various numbers of P. knowlesi-infected mosquitoes. Finally, P. knowlesi-infected mosquitoes were used to challenge 17 monkeys in a malaria vaccine trial, and the effect of number of infectious bites on monkey parasitaemia was documented.ResultsAnopheles dirus, Anopheles crascens, and Anopheles dirus X (a cross between the two species) produced large numbers of P. knowlesi sporozoites. Mosquito survival to day 14, when sporozoites fill the salivary glands, averaged only 32% when donor monkeys had a parasitaemia above 2%. However, when donor monkey parasitaemia was below 2%, mosquitoes survived twice as well and contained ample sporozoites in their salivary glands. Adding methylparaben to sugar solutions did not improve survival of infected mosquitoes. Plasmodium knowlesi was very infectious, with all monkeys developing blood stage infections if one or more infected mosquitoes successfully fed. There was also a dose-response, with monkeys that received higher numbers of infected mosquito bites developing malaria sooner.ConclusionsAnopheles dirus, An. crascens and a cross between these two species all were excellent vectors for P. knowlesi. High donor monkey parasitaemia was associated with poor mosquito survival. A single infected mosquito bite is likely sufficient to infect a monkey with P. knowlesi. It is possible to efficiently challenge large groups of monkeys by mosquito bite, which will be useful for P. knowlesi vaccine studies.

Collaboration


Dive into the Jittawadee Murphy's collaboration.

Top Co-Authors

Avatar

Christian F. Ockenhouse

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Jason W. Bennett

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Jack Komisar

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Martha Sedegah

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Michele Spring

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Cindy Tamminga

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Edwin Kamau

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Esteban Abot

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Fouzia Farooq

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Harini Ganeshan

Naval Medical Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge