Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javier A. Menendez is active.

Publication


Featured researches published by Javier A. Menendez.


Nutrition Metabolism and Cardiovascular Diseases | 2010

Olive oil and health: Summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008

Jose Lopez-Miranda; Francisco Perez-Jimenez; E. Ros; Lina Badimon; Covas Mi; E. Escrich; Jose M. Ordovas; F. Soriguer; R. Abiá; C. Alarcón de la Lastra; Maurizio Battino; Dolores Corella; J. Chamorro-Quirós; J. Delgado-Lista; D. Giugliano; Katherine Esposito; Ramón Estruch; José Manuel Fernández-Real; José Juan Gaforio; C. La Vecchia; Denis Lairon; F. López-Segura; P. Mata; Javier A. Menendez; F.J. Muriana; J. Osada; Demosthenes B. Panagiotakos; Juan Antonio Paniagua; Pablo Perez-Martinez; J. Perona

Olive oil (OO) is the most representative food of the traditional Mediterranean Diet (MedDiet). Increasing evidence suggests that monounsaturated fatty acids (MUFA) as a nutrient, OO as a food, and the MedDiet as a food pattern are associated with a decreased risk of cardiovascular disease, obesity, metabolic syndrome, type 2 diabetes and hypertension. A MedDiet rich in OO and OO per se has been shown to improve cardiovascular risk factors, such as lipid profiles, blood pressure, postprandial hyperlipidemia, endothelial dysfunction, oxidative stress, and antithrombotic profiles. Some of these beneficial effects can be attributed to the OO minor components. Therefore, the definition of the MedDiet should include OO. Phenolic compounds in OO have shown antioxidant and anti-inflammatory properties, prevent lipoperoxidation, induce favorable changes of lipid profile, improve endothelial function, and disclose antithrombotic properties. Observational studies from Mediterranean cohorts have suggested that dietary MUFA may be protective against age-related cognitive decline and Alzheimers disease. Recent studies consistently support the concept that the OO-rich MedDiet is compatible with healthier aging and increased longevity. In countries where the population adheres to the MedDiet, such as Spain, Greece and Italy, and OO is the principal source of fat, rates of cancer incidence are lower than in northern European countries. Experimental and human cellular studies have provided new evidence on the potential protective effect of OO on cancer. Furthermore, results of case-control and cohort studies suggest that MUFA intake including OO is associated with a reduction in cancer risk (mainly breast, colorectal and prostate cancers).


PLOS ONE | 2009

Autophagy Facilitates the Development of Breast Cancer Resistance to the Anti-HER2 Monoclonal Antibody Trastuzumab

Alejandro Vazquez-Martin; Cristina Oliveras-Ferraros; Javier A. Menendez

Autophagy has been emerging as a novel cytoprotective mechanism to increase tumor cell survival under conditions of metabolic stress and hypoxia as well as to escape chemotherapy-induced cell death. To elucidate whether autophagy might also protect cancer cells from the growth inhibitory effects of targeted therapies, we evaluated the autophagic status of preclinical breast cancer models exhibiting auto-acquired resistance to the anti-HER2 monoclonal antibody trastuzumab (Tzb). We first examined the basal autophagic levels in Tzb-naive SKBR3 cells and in two pools of Tzb-conditioned SKBR3 cells (TzbR), which optimally grow in the presence of Tzb doses as high as 200 µg/ml Tzb. Fluorescence microscopic analyses revealed that the number of punctate LC3 structures -a hallmark of autophagy- was drastically higher in Tzb-refractory cells than in Tzb-sensitive SKBR3 parental cells. Immunoblotting analyses confirmed that the lipidation product of the autophagic conversion of LC3 was accumulated to high levels in TzbR cells. High levels of the LC3 lipidated form in Tzb-refractory cells were accompanied by decreased p62/sequestosome-1 protein expression, a phenomenon characterizing the occurrence of increased autophagic flux. Moreover, increased autophagy was actively used to survive Tzb therapy as TzbR pools were exquisitely sensitive to chemical inhibitors of autophagosomal formation/function. Knockdown of LC3 expression via siRNA similarly resulted in reduced TzbR cell proliferation and supra-additively interacted with Tzb to re-sensitize TzbR cells. Sub-groups of Tzb-naive SKBR3 parental cells accumulated LC3 punctate structures and decreased p62 expression after treatment with high-dose Tzb, likely promoting their own resistance. This is the first report showing that HER2-overexpressing breast cancer cells chronically exposed to Tzb exhibit a bona fide up-regulation of the autophagic activity that efficiently works to protect breast cancer cells from the growth-inhibitory effects of Tzb. Therapeutic targeting autophagosome formation/function might represent a novel molecular avenue to reduce the emergence of Tzb resistance in HER2-dependent breast carcinomas.


Cell Cycle | 2009

The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells

Alejandro Vazquez-Martin; Cristina Oliveras-Ferraros; Javier A. Menendez

Population studies have revealed that treatment with the anti-diabetic drug metformin significantly associates with reduced breast cancer risk. Animal studies have shown that metformin suppresses the development of mammary carcinomas in transgenic female mice carrying a HER2 oncogene, but not that of spontaneous tumors. We herein demonstrate that HER2 oncoprotein itself may represent a key cellular target involved in the anti-breast cancer actions of metformin. First, ectopical overexpression of HER2 oncogene significantly enhances metformin-induced breast cancer cell growth inhibition. Second, metformin treatment drastically down-regulates HER2 protein levels (up to 85% reduction) in a dose- and time-dependent manner. Metformin-induced inhibition of HER2 take places regardless the molecular mechanism contributing to HER2 overexpression (i.e., human HER2 cDNA exogenously driven by a viral promoter and naturally occurring endogenous HER2 gene amplification). Mechanistically, metformin-induced suppression of HER2 overexpression appears to occur via direct (AMPK-independent) inhibition of p70S6K1 activity. Compound C- and small interference RNA (siRNA)-induced blockade of AMPK activity/expression fail to prevent the anti-HER2 effect of metformin while AMPK hyperactivation following exposure to the AMP analog AICAR is not sufficient to down-regulate HER2 expression. HER2-positive breast cancer cells transfected with p70S6K1 siRNA become completely refractory to metformin-induced HER2 suppression. Of note, co-incubation with agents that block reactive oxygen species (ROS) production (e.g. N-acetylcisteine) dramatically enhanced the ability of metformin to decrease HER2 expression. From the perspective of chemoprevention, these findings altogether suggest that metformin might exert a protective mostly confined to the HER2-positive breast cancer subtype. From the perspective of intervention, the presence/absence of molecular hallmarks such as HER2 overexpression and/or p70S6K1 hyperactivation might dictate alternative responses in metformin-based treatment of early breast cancer. The importance of mTOR/p70S6K1-sensed ROS status at mediating the anti-oncogenic effects of metformin might represent a previously unrecognized linkage molecularly connecting its anti-aging and anti-cancer actions.


Cell Cycle | 2010

Metformin against TGFβ-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis.

Sílvia Cufí; Alejandro Vazquez-Martin; Cristina Oliveras-Ferraros; Begoña Martin-Castillo; Jorge Joven; Javier A. Menendez

Transforming Growth Factor-b (TGFb) is a major driving force of the Epithelial-to-Mesenchymal (EMT) genetic program, which becomes overactive in the pathophysiology of many age-related human diseases. TGFb-driven EMT is sufficient to generate migrating cancer stem cells by directly linking the acquisition of cellular motility with the maintenance of tumor-initiating (stemness) capacity. Chronic diseases exhibiting excessive fibrosis can be caused by repeated and sustained infliction of TGFb-driven EMT, which increases collagen and extracellular matrix synthesis. Pharmacological prevention and/or reversal of TGFb-induced EMT may therefore have important clinical applications in the management of cancer metastasis as well as in the prevention and/or treatment of end-state organ failures. Earlier studies from our group have revealed that clinically-relevant concentrations of the biguanide derivative metformin, the most widely used oral agent to lower blood glucose concentration in patients with type 2 diabetes and metabolic syndrome, notably decreased both the self-renewal and the proliferation of trastuzumab-refractory breast cancer stem cell populations. Given that: a.) tumor-initiating cancer stem cells display a significant enrichment in the expression of basal/mesenchymal or myoepithelial markers, including an increased secretion of TGFb; b.) metformin treatment impedes the ontogeny of generating the stem cell phenotype by transcriptionally repressing key drivers of the EMT genetic program (e.g. ZEB1, TWIST1, SNAIL2 [Slug], TGFbs), we recently hypothesized that prevention of TGFb-induced EMT might represent a common molecular mechanism underlying the anti-cancer stem cells and anti-fibrotic actions of metformin. Remarkably, metformin exposure not only impedes TGFb-promoted loss of the epithelial marker E-cadherin in MCF-7 breast cancer cells but it prevents further TGF-induced cell scattering and accumulation of the mesenchymal marker vimentin in Madin-Darby canine kidney (MDCK) cells. We now propose that metformin, by weakening the ability of TGFb signaling to fully induce mesenchymal cell states in a variety of pathological processes including fibrosis (e.g. chronic renal disease, non-alcoholic steatohepatitis, heart failure or sclerosis) and malignant progression (and likely by reducing TGFb-regulated inflammation and immune responses -inflamm-aging-), molecularly behaves as a bona fide anti-aging modality.


The EMBO Journal | 2005

Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases

Marius K. Lemberg; Javier A. Menendez; Angelika Misik; Maite Garcia; Christopher M. Koth; Matthew Freeman

Intramembrane proteases have the unusual property of cleaving peptide bonds within the lipid bilayer, an environment not obviously suited to a water‐requiring hydrolysis reaction. These enzymes include site‐2 protease, γ‐secretase/presenilin, signal peptide peptidase and the rhomboids, and they have a wide range of cellular functions. All have multiple transmembrane domains and, because of their high hydrophobicity, have been difficult to purify. We have now developed an in vitro assay to monitor rhomboid activity in the detergent solubilised state. This has allowed us to isolate for the first time a highly pure rhomboid with catalytic activity. Our results suggest that detergent‐solubilised rhomboid activity mimics its activity in biological membranes in many aspects. Analysis of purified mutant proteins suggests that rhomboids use a serine protease catalytic dyad instead of the previously proposed triad. This analysis also suggests that other conserved residues participate in subsidiary functions like ligand binding and water supply. We identify a motif shared between rhomboids and the recently discovered derlins, which participate in translocation of misfolded membrane proteins.


Autophagy | 2013

Autophagy in stem cells

Jun-Lin Guan; Anna Katharina Simon; Mark Prescott; Javier A. Menendez; Fei Liu; Fen Wang; Chenran Wang; Ernst J. Wolvetang; Alejandro Vazquez-Martin; Jue Zhang

Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.


Oncogene | 2005

A novel CYR61-triggered 'CYR61-αvβ3 integrin loop' regulates breast cancer cell survival and chemosensitivity through activation of ERK1/ERK2 MAPK signaling pathway

Javier A. Menendez; Luciano Vellon; Inderjit Mehmi; Poh K. Teng; David W. Griggs; Ruth Lupu

The angiogenic inducer CYR61 is differentially overexpressed in breast cancer cells exhibiting high levels of Heregulin (HRG), a growth factor closely associated with a metastatic breast cancer phenotype. Here, we examined whether CYR61, independently of HRG, actively regulates breast cancer cell survival and chemosensitivity, and the pathways involved. Forced expression of CYR61 in HRG-negative MCF-7 cells notably upregulated the expression of its own integrin receptor αvβ3 (>200 times). Small peptidomimetic αvβ3 integrin antagonists dramatically decreased cell viability of CYR61-overexpressing MCF-7 cells, whereas control MCF-7/V remained insensitive. Mechanistically, functional blockade of αvβ3 specifically abolished CYR6-induced hyperactivation of ERK1/ERK2 MAPK, whereas the activation status of AKT did not decrease. Moreover, CYR61 overexpression rendered MCF-7 cells significantly resistant (>10-fold) to Taxol-induced cytotoxicity. Remarkably, αvβ3 inhibition converted the CYR61-induced Taxol-resistant phenotype into a hypersensitive one. Thus, the augmentation of Taxol-induced apoptotic cell death in the presence of αvβ3 antagonists demonstrated a strong synergism as verified by the terminal transferase-mediated dUTP nick-end labeling (TUNEL) assay and by flow cytometric analysis for DNA content. Indeed, functional blockade of αvβ3, similarly to the pharmacological MAPK inhibitor U0126, synergistically increased both the proportion of CYR61-overexpressing breast cancer cells in the G2 phase of the cell cycle and the appearance of sub-G1 hypodiploid (apoptotic) cells caused by Taxol. Strikingly, CYR61 overexpression impaired the accumulation of wild-type p53 following Taxol exposure, while inhibition of αvβ3 or ERK1/ERK2 MAPK signalings completely restored Taxol-induced upregulation of p53. Moreover, antisense downregulation of CYR61 expression abolished the anchorage-independent growth of breast cancer cells engineered to overexpress HRG, and significantly increased their sensitivity to Taxol. Our data provide evidence that CYR61 is sufficient to promote breast cancer cell proliferation, cell survival, and Taxol resistance through a αvβ3-activated ERK1/ERK2 MAPK signaling. The identification of a ‘CYR61-αvβ3 autocrine loop’ in the epithelial compartment of breast carcinoma strongly suggests that targeting αvβ3 may simultaneously prevent breast cancer angiogenesis, growth, and chemoresistance.


European Journal of Cancer | 2001

Effects of gamma-linolenic acid and oleic acid on paclitaxel cytotoxicity in human breast cancer cells

Javier A. Menendez; M. del Mar Barbacid; Sagrario Montero; E. Sevilla; Eduard Escrich; Montserrat Solanas; Hernán Cortés-Funes; Ramon Colomer

It has been suggested that dietary interventions may improve the effectiveness of cancer chemotherapy. We have examined the combined in vitro cytotoxicity of paclitaxel and the fatty acids gamma-linolenic acid (GLA, 18:3n-6) and oleic acid (OA, 18:1n-9) in human breast carcinoma MDA-MB-231 cells. The effect of fatty acids on paclitaxel chemosensitivity was determined by comparing IC(50) and IC(70) (50 and 70% inhibitory concentrations, respectively) obtained when the cells were exposed to IC(50) and IC(70) levels of paclitaxel alone and fatty acids were supplemented either before or during the exposure to paclitaxel. The 3-4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to determine cell growth inhibition. GLA by itself showed antiproliferative effects, and a possible GLA-paclitaxel interaction at the cellular level was assessed by the isobologram and the combination-index (CI) methods. Isobole analysis at the isoeffect levels of 50 and 70% revealed that drug interaction was predominantly synergistic when GLA and paclitaxel were added concurrently for 24 h to the cell cultures. Interaction assessment using the median-effect principle and the combination-index (CI) method showed that exposure of MDA-MB-231 cells to an equimolar combination of concurrent GLA plus paclitaxel for 24 h resulted in a moderate synergism at all effect levels, consistent with the results of the isobologram analysis. When exposure to GLA (24 h) was followed sequentially by paclitaxel (24 h) only an additive effect was observed. The GLA-mediated increase in paclitaxel chemosensitivity was only partially abolished by Vitamin E, a lipid peroxidation inhibitor, suggesting a limited influence of the oxidative status of GLA in achieving potentiation of paclitaxel toxicity. When OA (a non-peroxidisable fatty acid) was combined with paclitaxel, an enhancement of chemosensitivity was found when OA was used concurrently with paclitaxel, although less markedly than with GLA. Pretreatment of MDA-MB-231 cells with OA for 24 h prior to a 24 h paclitaxel exposure produced greater enhancement of paclitaxel sensitivity at high OA concentrations than the concurrent exposure to OA and paclitaxel. The OA-induced sensitisation to paclitaxel was not due to the cytoxicity of the fatty acid itself. When these observations were extended to three additional breast carcinoma cell lines (SK-Br3, T47D and MCF-7), simultaneous exposure to GLA and paclitaxel also resulted in synergism. GLA preincubation followed by paclitaxel resulted in additivity for all cell lines. Simultaneous exposure to paclitaxel and OA enhanced paclitaxel cytotoxicity in T47D and MCF-7 cells, but not in SK-Br3 cells, whereas preincubation with OA failed to increase paclitaxel effectiveness in all three cell lines. For comparison, the effects of other fatty acids on paclitaxel chemosensitivity were examined: GLA was the most potent at enhancing paclitaxel cytotoxicity, followed by alpha-linolenic acid (ALA; 18:3n.3), eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), whereas linoleic acid (LA; 18:2n-6) did not increase paclitaxel toxicity. These findings provide experimental support for the use of fatty acids as modulators of tumour cell chemosensitivity in paclitaxel-based therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway

Javier A. Menendez; Ainhoa Pérez-Garijo; Manuel Calleja; Ginés Morata

Mutant larvae for the Drosophila gene lethal giant larva (lgl) develop neoplastic tumors in imaginal discs. However, lgl mutant clones do not form tumors when surrounded by wild-type tissue, suggesting the existence of a tumor-suppressing mechanism. We have investigated the tumorigenic potential of lgl mutant cells by generating wing compartments that are entirely mutant for lgl and also inducing clones of various genetic combinations of lgl− cells. We find that lgl− compartments can grow indefinitely but lgl− clones are eliminated by cell competition. lgl mutant cells may form tumors if they acquire constitutive activity of the Ras pathway (lgl− UAS-rasV12), which confers proliferation advantage through inhibition of the Hippo pathway. Yet, the majority of lgl− UAS-rasV12 clones are eliminated in spite of their high proliferation rate. The formation of a tumor requires in addition the formation of a microenvironment that allows mutant cells to evade cell competition.


Cell Cycle | 2011

mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: A roadmap from energy metabolism to stem cell renewal and aging

Javier A. Menendez; Luciano Vellon; Cristina Oliveras-Ferraros; Sílvia Cufí; Alejandro Vazquez-Martin

Molecular controllers of the number and function of tissue stem cells may share common regulatory pathways for the nuclear reprogramming of somatic cells to become induced Pluripotent Stem Cells (iPSCs). If this hypothesis is true, testing the ability of longevity-promoting chemicals to improve reprogramming efficiency may provide a proof-of-concept validation tool for pivotal housekeeping pathways that limit the numerical and/or functional decline of adult stem cells. Reprogramming is a slow, stochastic process due to the complex and apparently unrelated cellular processes that are involved. First, forced expression of the Yamanaka cocktail of stemness factors, OSKM, is a stressful process that activates apoptosis and cellular senescence, which are the two primary barriers to cancer development and somatic reprogramming. Second, the a priori energetic infrastructure of somatic cells appears to be a crucial stochastic feature for optimal successful routing to pluripotency. If longevity-promoting compounds can ablate the drivers and effectors of cellular senescence while concurrently enhancing a bioenergetic shift from somatic oxidative mitochondria toward an alternative ATP-generating glycolytic metabotype, they could maximize the efficiency of somatic reprogramming to pluripotency. Support for this hypothesis is evidenced by recent findings that well-characterized mTOR inhibitors and autophagy activators (e.g., PP242, rapamycin and resveratrol) notably improve the speed and efficiency of iPSC generation. This article reviews the existing research evidence that the most established mTOR inhibitors can notably decelerate the cellular senescence that is imposed by DNA damage-like responses, which are somewhat equivalent to the responses caused by reprogramming factors. These data suggest that fine-tuning mTOR signaling can impact mitochondrial dynamics to segregate mitochondria that are destined for clearance through autophagy, which results in the loss of mitochondrial function and in the accelerated onset of the glycolytic metabolism that is required to fuel reprogramming. By critically exploring how mTOR-regulated senescence, bioenergetic infrastructure and autophagy can actively drive the reprogramming of somatic cells to pluripotency, we define a metabolic roadmap that may be helpful for designing pharmacological and behavioral interventions to prevent or retard the dysfunction/exhaustion of aging stem cell populations.

Collaboration


Dive into the Javier A. Menendez's collaboration.

Top Co-Authors

Avatar

Jorge Joven

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar

Ruth Lupu

Georgetown University

View shared research outputs
Top Co-Authors

Avatar

Alejandro Vazquez-Martin

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Alejandro Vazquez-Martin

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Ramon Colomer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugeni López-Bonet

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciano Vellon

NorthShore University HealthSystem

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge