Javier Cubas
Technical University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Javier Cubas.
Applied Optics | 2015
Eddy Neefs; Ann Carine Vandaele; Rachel Drummond; Ian R. Thomas; Sophie Berkenbosch; Roland Clairquin; Sofie Delanoye; Bojan Ristic; Jeroen Maes; Sabrina Bonnewijn; Gerry Pieck; Eddy Equeter; C. Depiesse; Frank Daerden; Emiel Van Ransbeeck; D. Nevejans; J. Rodriguez-Gomez; J. J. Lopez-Moreno; Rosario Sanz; Rafael Talero Morales; Gian Paolo Candini; M. Carmen Pastor-Morales; Beatriz Aparicio del Moral; José-Maria Jeronimo-Zafra; Juan Manuel Gómez-López; Gustavo Alonso-Rodrigo; Isabel Pérez-Grande; Javier Cubas; Alejandro M. Gomez-Sanjuan; Fermín Navarro-Medina
NOMAD is a spectrometer suite on board ESAs ExoMars trace gas orbiter due for launch in January 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at dayside and nightside, and during solar occultations. In this paper, the design, manufacturing, and testing of the two infrared channels are described. We focus upon the optical working principle in these channels, where an echelle grating, used as a diffractive element, is combined with an acousto-optical tunable filter, used as a diffraction order sorter.
ieee international conference on renewable energy research and applications | 2013
Javier Cubas; Santiago Pindado; Assal Farrahi
Correct modeling of the equivalent circuits regarding solar cell and panels is today an essential tool for power optimization. However, the parameter extraction of those circuits is still a quite difficult task that normally requires both experimental data and calculation procedures, generally not available to the normal user. This paper presents a new analytical method that easily calculates the equivalent circuit parameters from the data that manufacturers usually provide. The analytical approximation is based on a new methodology, since methods developed until now to obtain the aforementioned equivalent circuit parameters from manufacturers data have always been numerical or heuristic. Results from the present method are as accurate as the ones resulting from other more complex (numerical) existing methods in terms of calculation process and resources.
Mathematical Problems in Engineering | 2015
Santiago Pindado; Javier Cubas; Félix Sorribes-Palmer
At present, engineering problems required quite a sophisticated calculation means. However, analytical models still can prove to be a useful tool for engineers and scientists when dealing with complex physical phenomena. The mathematical models developed to analyze three different engineering problems: photovoltaic devices analysis; cup anemometer performance; and high-speed train pressure wave effects in tunnels are described. In all cases, the results are quite accurate when compared to testing measurements.
Applied Optics | 2017
Manish R. Patel; Philippe Antoine; Jonathon P. Mason; M. R. Leese; B. Hathi; Adam Stevens; Daniel Dawson; Jason Gow; T. J. Ringrose; J. A. Holmes; Stephen R. Lewis; Didier Beghuin; Philip van Donink; Renaud Ligot; Jean-Luc Dewandel; Daohua Hu; Doug Bates; R. Cole; Rachel Drummond; Ian R. Thomas; C. Depiesse; Eddy Neefs; Eddy Equeter; Bojan Ristic; Sophie Berkenbosch; D. Bolsée; Yannick Willame; Ann Carine Vandaele; Stefan Lesschaeve; Lieve De Vos
NOMAD is a spectrometer suite on board the ESA/Roscosmos ExoMars Trace Gas Orbiter, which launched in March 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel, allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at the day- and night-side, and during solar occultations. Here, in part 2 of a linked study, we describe the design, manufacturing, and testing of the ultraviolet and visible spectrometer channel called UVIS. We focus upon the optical design and working principle where two telescopes are coupled to a single grating spectrometer using a selector mechanism.
Archive | 2014
Javier Cubas; Santiago Pindado; Carlos de Manuel
At present, photovoltaic energy is one of the most important renewable energy sources. The demand for solar panels has been continuously growing, both in the industrial electric sector and in the private sector. In both cases the analysis of the solar panel efficiency is extremely important in order to maximize the energy production. In order to have a more efficient photovoltaic system, the most accurate understanding of this system is required. However, in most of the cases the only information available in this matter is reduced, the experimental testing of the photovoltaic device being out of consideration, normally for budget reasons. Several methods, normally based on an equivalent circuit model, have been developed to extract the I-V curve of a photovoltaic device from the small amount of data provided by the manufacturer. The aim of this paper is to present a fast, easy, and accurate analytical method, developed to calculate the equivalent circuit parameters of a solar panel from the only data that manufacturers usually provide. The calculated circuit accurately reproduces the solar panel behavior, that is, the I-V curve. This fact being extremely important for practical reasons such as selecting the best solar panel in the market for a particular purpose, or maximize the energy extraction with MPPT (Maximum Peak Power Tracking) methods.
Measurement Science and Technology | 2015
Santiago Pindado; Alvaro Ramos-Cenzano; Javier Cubas
The cup anemometer rotor aerodynamics is analytically studied based on the aerodynamics of a single cup. The effect of the rotation on the aerodynamic force is included in the analytical model, together with the displacement of the aerodynamic center during one turn of the cup. The model can be fitted to the testing results, indicating the presence of both the aforementioned effects.
Defect and Diffusion Forum | 2014
Santiago Pindado; Javier Cubas
In the present study the geometry of cups is experimentally studied through anemometer performance. This performance is analyzed in two different ways. On the one hand the anemometer transfer function between cases is compared. On the other hand the stationary rotation speed is decomposed into constant and harmonic terms, the comparison being established between the last ones. Results indicate that some cup shapes can improve the uniformity of anemometer rotation, this fact being important to reduce degradation due to ageing.
Journal of Power Sources | 2014
Javier Cubas; Santiago Pindado; Marta Victoria
Energies | 2014
Javier Cubas; Santiago Pindado; Carlos de Manuel
Journal of Guidance Control and Dynamics | 2015
Javier Cubas; Assal Farrahi; Santiago Pindado