Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javier Forment is active.

Publication


Featured researches published by Javier Forment.


Molecular and Cellular Biology | 2000

Regulation of yeast H(+)-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters.

Alain Goossens; Natalia de la Fuente; Javier Forment; Ramón Serrano; Francisco Portillo

ABSTRACT The regulation of electrical membrane potential is a fundamental property of living cells. This biophysical parameter determines nutrient uptake, intracellular potassium and turgor, uptake of toxic cations, and stress responses. In fungi and plants, an important determinant of membrane potential is the electrogenic proton-pumping ATPase, but the systems that modulate its activity remain largely unknown. We have characterized two genes from Saccharomyces cerevisiae, PTK2 and HRK1(YOR267c), that encode protein kinases implicated in activation of the yeast plasma membrane H+-ATPase (Pma1) in response to glucose metabolism. These kinases mediate, directly or indirectly, an increase in affinity of Pma1 for ATP, which probably involves Ser-899 phosphorylation. Ptk2 has the strongest effect on Pma1, and ptk2 mutants exhibit a pleiotropic phenotype of tolerance to toxic cations, including sodium, lithium, manganese, tetramethylammonium, hygromycin B, and norspermidine. A plausible interpretation is that ptk2 mutants have a decreased membrane potential and that diverse cation transporters are voltage dependent. Accordingly, ptk2 mutants exhibited reduced uptake of lithium and methylammonium. Ptk2 and Hrk1 belong to a subgroup of yeast protein kinases dedicated to the regulation of plasma membrane transporters, which include Npr1 (regulator of Gap1 and Tat2 amino acid transporters) and Hal4 and Hal5 (regulators of Trk1 and Trk2 potassium transporters).


Plant Molecular Biology | 2005

Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies

Javier Forment; José Gadea; L. Huerta; L. Abizanda; J. Agusti; S. Alamar; E. Alos; F. Andres; R. Arribas; José Pío Beltrán; A. Berbel; Miguel A. Blázquez; J. Brumos; L. A. Canas; M. Cercos; J. M. Colmenero-Flores; A. Conesa; B. Estables; Mónica Gandía; José L. García-Martínez; Jacinta Gimeno; A. Gisbert; G. Gomez; Luis González-Candelas; Antonio Granell; J. Guerri; María T. Lafuente; Francisco Madueño; Jose F. Marcos; M. C. Marques

A functional genomics project has been initiated to approach the molecular characterization of the main biological and agronomical traits of citrus. As a key part of this project, a citrus EST collection has been generated from 25 cDNA libraries covering different tissues, developmental stages and stress conditions. The collection includes a total of 22,635 high-quality ESTs, grouped in 11,836 putative unigenes, which represent at least one third of the estimated number of genes in the citrus genome. Functional annotation of unigenes which have Arabidopsis orthologues (68% of all unigenes) revealed gene representation in every major functional category, suggesting that a genome-wide EST collection was obtained. A Citrus clementina Hort. ex Tan. cv. Clemenules genomic library, that will contribute to further characterization of relevant genes, has also been constructed. To initiate the analysis of citrus transcriptome, we have developed a cDNA microarray containing 12,672 probes corresponding to 6875 putative unigenes of the collection. Technical characterization of the microarray showed high intra- and inter-array reproducibility, as well as a good range of sensitivity. We have also validated gene expression data achieved with this microarray through an independent technique such as RNA gel blot analysis.


Plant Physiology | 2013

GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology

Alejandro Sarrion-Perdigones; Marta Vazquez-Vilar; Jorge Palací; Bas Castelijns; Javier Forment; Peio Ziarsolo; José Blanca; Antonio Granell; Diego Orzaez

GoldenBraid 2.0 is a comprehensive technological framework that facilitates the construction of increasingly complex multigene structures and exchange of genetic building blocks. Plant synthetic biology aims to apply engineering principles to plant genetic design. One strategic requirement of plant synthetic biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here, we describe GoldenBraid 2.0 (GB2.0), a comprehensive technological framework that aims to foster the exchange of standard DNA parts for plant synthetic biology. GB2.0 relies on the use of type IIS restriction enzymes for DNA assembly and proposes a modular cloning schema with positional notation that resembles the grammar of natural languages. Apart from providing an optimized cloning strategy that generates fully exchangeable genetic elements for multigene engineering, the GB2.0 toolkit offers an ever-growing open collection of DNA parts, including a group of functionally tested, premade genetic modules to build frequently used modules like constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of Web resources that include a publicly available database, tutorials, and a software package that provides in silico simulations and laboratory protocols for GB2.0 part domestication and multigene engineering. In short, GB2.0 provides a framework to exchange both information and physical DNA elements among bioengineers to help implement plant synthetic biology projects.


PLOS ONE | 2011

High-Throughput Sequencing, Characterization and Detection of New and Conserved Cucumber miRNAs

German Martinez; Javier Forment; César Llave; Vicente Pallás; Gustavo Gómez

Micro RNAS (miRNAs) are a class of endogenous small non coding RNAs involved in the post-transcriptional regulation of gene expression. In plants, a great number of conserved and specific miRNAs, mainly arising from model species, have been identified to date. However less is known about the diversity of these regulatory RNAs in vegetal species with agricultural and/or horticultural importance. Here we report a combined approach of bioinformatics prediction, high-throughput sequencing data and molecular methods to analyze miRNAs populations in cucumber (Cucumis sativus) plants. A set of 19 conserved and 6 known but non-conserved miRNA families were found in our cucumber small RNA dataset. We also identified 7 (3 with their miRNA* strand) not previously described miRNAs, candidates to be cucumber-specific. To validate their description these new C. sativus miRNAs were detected by northern blot hybridization. Additionally, potential targets for most conserved and new miRNAs were identified in cucumber genome. In summary, in this study we have identified, by first time, conserved, known non-conserved and new miRNAs arising from an agronomically important species such as C. sativus. The detection of this complex population of regulatory small RNAs suggests that similarly to that observe in other plant species, cucumber miRNAs may possibly play an important role in diverse biological and metabolic processes.


Plant Molecular Biology | 2008

Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit

Ebenezer A. Ogundiwin; Cristina Martí; Javier Forment; Clara Pons; Antonio Granell; Thomas M. Gradziel; Cameron Peace; Carlos H. Crisosto

The ChillPeach database was developed to facilitate identification of genes controlling chilling injury (CI), a global-scale post-harvest physiological disorder in peach. It contained 7,862 high-quality ESTs (comprising 4,468 unigenes) obtained from mesocarp tissues of two full-sib progeny contrasting for CI, about 48 and 13% of which are unique to Prunus and Arabidopsis, respectively. All ESTs are in the Gateway® vector to facilitate functional assessment of the genes. The data set contained several putative SNPs and 184 unigenes with high quality SSRs, of which 42% were novel to Prunus. Microarray slides containing 4,261 ChillPeach unigenes were printed and used in a pilot experiment to identify differentially expressed genes in cold-treated compared to control mesocarp tissues, and in vegetative compared to mesocarp tissues. Quantitative RT-PCR (qRT-PCR) confirmed microarray results for all 13 genes tested. The microarray and qRT-PCR analyses indicated that ChillPeach is rich in putative fruit-specific and novel cold-induced genes. A website (http://bioinfo.ibmcp.upv.es/genomics/ChillPeachDB) was created holding detailed information on the ChillPeach database.


Journal of Experimental Botany | 2014

Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance.

Miguel González-Guzmán; Lesia Rodriguez; Laura Lorenzo-Orts; Clara Pons; Alejandro Sarrion-Perdigones; Maria A. Fernandez; Marta Peirats-Llobet; Javier Forment; María Moreno-Alvero; Sean R. Cutler; Armando Albert; Antonio Granell; Pedro L. Rodriguez

Summary Chemical and transgenic approaches can activate ABA signalling via crop PYR/PYL ABA receptors; quinabactin can selectively activate tomato ABA receptors, and overexpression of monomeric-type receptors confers enhanced plant drought resistance.


BMC Genomics | 2008

A genome-wide 20 K citrus microarray for gene expression analysis

M Angeles Martinez-Godoy; Nuria Mauri; Jose Juarez; M. Carmen Marqués; Julia Santiago; Javier Forment; José Gadea

BackgroundUnderstanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant.ResultsWe have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database [1] was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability.ConclusionThis new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to catalogue genes expressed in citrus globular embryos.


BMC Bioinformatics | 2008

EST2uni: an open, parallel tool for automated EST analysis and database creation, with a data mining web interface and microarray expression data integration

Javier Forment; Francisco Gilabert; Antonio Robles; Vicente Conejero; Fernando Nuez; José Blanca

BackgroundExpressed sequence tag (EST) collections are composed of a high number of single-pass, redundant, partial sequences, which need to be processed, clustered, and annotated to remove low-quality and vector regions, eliminate redundancy and sequencing errors, and provide biologically relevant information. In order to provide a suitable way of performing the different steps in the analysis of the ESTs, flexible computation pipelines adapted to the local needs of specific EST projects have to be developed. Furthermore, EST collections must be stored in highly structured relational databases available to researchers through user-friendly interfaces which allow efficient and complex data mining, thus offering maximum capabilities for their full exploitation.ResultsWe have created EST2uni, an integrated, highly-configurable EST analysis pipeline and data mining software package that automates the pre-processing, clustering, annotation, database creation, and data mining of EST collections. The pipeline uses standard EST analysis tools and the software has a modular design to facilitate the addition of new analytical methods and their configuration. Currently implemented analyses include functional and structural annotation, SNP and microsatellite discovery, integration of previously known genetic marker data and gene expression results, and assistance in cDNA microarray design. It can be run in parallel in a PC cluster in order to reduce the time necessary for the analysis. It also creates a web site linked to the database, showing collection statistics, with complex query capabilities and tools for data mining and retrieval.ConclusionThe software package presented here provides an efficient and complete bioinformatics tool for the management of EST collections which is very easy to adapt to the local needs of different EST projects. The code is freely available under the GPL license and can be obtained at http://bioinf.comav.upv.es/est2uni. This site also provides detailed instructions for installation and configuration of the software package. The code is under active development to incorporate new analyses, methods, and algorithms as they are released by the bioinformatics community.


Molecular Plant Pathology | 2011

Transcriptomic profiling of citrus fruit peel tissues reveals fundamental effects of phenylpropanoids and ethylene on induced resistance

Ana-Rosa Ballester; M. Teresa Lafuente; Javier Forment; José Gadea; Ric C. H. de Vos; Arnaud G. Bovy; Luis González-Candelas

Penicillium spp. are the major postharvest pathogens of citrus fruit in Mediterranean climatic regions. The induction of natural resistance constitutes one of the most promising alternatives to avoid the environmental contamination and health problems caused by chemical fungicides. To understand the bases of the induction of resistance in citrus fruit against Penicillium digitatum, we have used a 12k citrus cDNA microarray to study transcriptional changes in the outer and inner parts of the peel (flavedo and albedo, respectively) of elicited fruits. The elicitor treatment led to an over-representation of biological processes associated with secondary metabolism, mainly phenylpropanoids and cellular amino acid biosynthesis and methionine metabolism, and the down-regulation of genes related to biotic and abiotic stresses. Among phenylpropanoids, we detected the over-expression of a large subset of genes important for the synthesis of flavonoids, coumarins and lignin, especially in the internal tissue. Furthermore, these genes and those of ethylene biosynthesis showed the highest induction. The involvement of both phenylpropanoid and ethylene pathways was confirmed by examining changes in gene expression and ethylene production in elicited citrus fruit. Therefore, global results indicate that secondary metabolism, mainly phenylpropanoids, and ethylene play important roles in the induction of resistance in citrus fruit.


Plant Molecular Biology | 2009

Shared and novel molecular responses of mandarin to drought

Jacinta Gimeno; José Gadea; Javier Forment; Jorge Pérez-Valle; Julia Santiago; María A. Martínez-Godoy; Lynne Yenush; José M. Bellés; Javier Brumos; José M. Colmenero-Flores; Manuel Talon; Ramón Serrano

Drought is the most important stress experienced by citrus crops. A citrus cDNA microarray of about 6.000 genes has been utilized to identify transcriptomic responses of mandarin to water stress. As observed in other plant species challenged with drought stress, key genes for lysine catabolism, proline and raffinose synthesis, hydrogen peroxide reduction, vacuolar malate transport, RCI2 proteolipids and defence proteins such as osmotin, dehydrins and heat-shock proteins are induced in mandarin. Also, some aquaporin genes are repressed. The osmolyte raffinose could be detected in stressed roots while the dehydrin COR15 protein only accumulated in stressed leaves but not in roots. Novel drought responses in mandarin include the induction of genes encoding a new miraculin isoform, chloroplast β-carotene hydroxylase, oleoyl desaturase, ribosomal protein RPS13A and protein kinase CTR1. These results suggest that drought tolerance in citrus may benefit from inhibition of proteolysis, activation of zeaxanthin and linolenoyl synthesis, reinforcement of ribosomal structure and down-regulation of the ethylene response.

Collaboration


Dive into the Javier Forment's collaboration.

Top Co-Authors

Avatar

José Gadea

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Antonio Granell

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Ramón Serrano

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Luis González-Candelas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Clara Pons

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

María T. Lafuente

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana-Rosa Ballester

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Cristina Martí

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Diego Orzaez

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Jose F. Marcos

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge