Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javier I. Ottaviani is active.

Publication


Featured researches published by Javier I. Ottaviani.


FEBS Letters | 2003

Inhibition of angiotensin converting enzyme (ACE) activity by flavan-3-ols and procyanidins.

Lucas Actis-Goretta; Javier I. Ottaviani; Carl L. Keen; Cesar G. Fraga

It was determined that flavan‐3‐ols and procyanidins have an inhibitory effect on angiotensin I converting enzyme (ACE) activity, and the effect was dependent on the number of epicatechin units forming the procyanidin. The inhibition by flavan‐3‐ols and procyanidins was competitive with the two substrates assayed: N‐hippuryl‐L‐histidyl‐L‐leucine (HHL) and N‐[3‐(2‐furyl)acryloyl]‐L‐phenylalanylglycylglycine (FAPGG). Tetramer and hexamer fractions were the more potent inhibitors, showing Ki of 5.6 and 4.7 μM, respectively. As ACE is a membrane protein, the interaction of flavanols and procyanidins with the enzyme could be related to the number of hydroxyl groups on the procyanidins, which determine their capacity to be adsorbed on the membrane surface.


Clinical & Developmental Immunology | 2005

Regular consumption of a flavanol-rich chocolate can improve oxidant stress in young soccer players

Cesar G. Fraga; Lucas Actis-Goretta; Javier I. Ottaviani; Fernando Carrasquedo; Silvina B. Lotito; Sheryl A. Lazarus; Harold H. Schmitz; Carl L. Keen

The consumption of a diet rich in certain flavonoids, including the flavanol sub-class, has been associated with a reduced risk for vascular disease. We evaluated the effects of the regular consumption (14 d) of a flavanol-containing milk chocolate (FCMC) or cocoa butter chocolate (CBC) on variables related to vascular disease risk, oxidative stress and physical activity. Twenty-eight free-living, young (18–20 years old) male soccer players consumed daily 105 g of FCMC (168 mg of flavanols) or CBC (<5 mg of flavanols), as part of their normal diet. The consumption of FCMC was significantly associated with a decrease in diastolic blood pressure (-5 mm Hg), mean blood pressure (-5 mm Hg), plasma cholesterol (-11%), LDL-cholesterol (-15%), malondialdehyde (-12%), urate (-11%) and lactate dehydrogenase (LDH) activity (-11%), and an increase in vitamin E/cholesterol (+12%). No relevant changes in these variables were associated with CBC consumption. No changes in the plasma levels of (-)-epicatechin were observed following analysis of fasting blood samples. In conclusion, FCMC consumption was associated with changes in several variables often associated with cardiovascular health and oxidant stress. The presence of significant quantities of flavanols in FCMC is likely to have been one of the contributing factors to these results.


Journal of the American College of Cardiology | 2010

Improvement of Endothelial Function With Dietary Flavanols Is Associated With Mobilization of Circulating Angiogenic Cells in Patients With Coronary Artery Disease

Christian Heiss; Sarah Jahn; Melanie Taylor; Wendy May Real; Franca S. Angeli; Maelene L. Wong; Nicolas Amabile; Megha Prasad; Tienush Rassaf; Javier I. Ottaviani; Shirley S. Mihardja; Carl L. Keen; Matthew L. Springer; Andrew J. Boyle; William Grossman; Stanton A. Glantz; Hagen Schroeter; Yerem Yeghiazarians

OBJECTIVES In patients with coronary artery disease (CAD) medically managed according to currently accepted guidelines, we tested whether a 1-month dietary intervention with flavanol-containing cocoa leads to an improvement of endothelial dysfunction and whether this is associated with an enhanced number and function of circulating angiogenic cells (CACs). BACKGROUND Dietary flavanols can improve endothelial dysfunction. The CACs, also termed endothelial progenitor cells, are critical for vascular repair and maintenance of endothelial function. METHODS In a randomized, controlled, double-masked, cross-over trial, 16 CAD patients (64+/-3 years of age) received a dietary high-flavanol intervention (HiFI [375 mg]) and a macronutrient- and micronutrient-matched low-flavanol intervention (LoFI [9 mg]) twice daily in random order over 30 days. RESULTS Endothelium-dependent vasomotor function, as measured by flow-mediated vasodilation of the brachial artery, improved by 47% in the HiFI period compared with the LoFI period. After HiFI, the number of CD34+/KDR+-CACs, as measured by flow cytometry, increased 2.2-fold as compared with after LoFI. The CAC functions, as measured by the capacity to survive, differentiate, proliferate, and to migrate were not different between the groups. The HiFI led to a decrease in systolic blood pressure (mean change over LoFI: -4.2+/-2.7 mm Hg), and increase in plasma nitrite level (mean change over LoFI: 74+/-32 nM). Applying a mixed-effects linear regression model, the results demonstrated a significant increase in flow-mediated vasodilation and a decrease in systolic blood pressure with increasing levels of CD34+/KDR+-CACs. CONCLUSIONS Sustained improvements in endothelial dysfunction by regular dietary intake of flavanols are associated with mobilization of functional CACs. (Effect of Cocoa Flavanols on Vascular Function in Optimally Treated Coronary Artery Disease Patients: Interaction Between Endothelial Progenitor Cells, Reactivity of Micro- and Macrocirculation; NCT00553774).


Free Radical Biology and Medicine | 2011

The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivo.

Javier I. Ottaviani; Tony Y. Momma; Christian Heiss; Catherine Kwik-Uribe; Hagen Schroeter; Carl L. Keen

Extensive epidemiological and clinical evidence associates diets high in flavanol-containing foods with cardiovascular health benefits in humans. Catechin and epicatechin, the most common flavanols in foods, are present in the diet in different enantiomeric forms. This study investigated the influence of the stereochemical configuration of flavanols on their absorption, metabolism, and biological activity. Healthy adult males were asked to consume equal amounts of the stereochemically pure flavanols (-)-epicatechin, (-)-catechin, (+)-catechin, and (+)-epicatechin (1.5mg/kg bw) in a well-defined cocoa-based, dairy-containing drink matrix, and flavanol levels were subsequently determined in plasma and 24-h urine. The results obtained show that the stereochemical configuration of flavanols has a profound influence on their uptake and metabolism in humans. In addition, we assessed the vasodilatory activity of each flavanol stereoisomer in vivo and found (-)-epicatechin to be the single stereoisomer capable of mediating a significant arterial dilation response. Importantly, this effect was independent of the classic antioxidant properties of flavanols. Overall, these results indicate that the proposed beneficial health effects associated with the consumption of flavanol-containing foods will significantly depend on the stereochemical configuration of the flavanols ingested.


The American Journal of Clinical Nutrition | 2012

Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans

Javier I. Ottaviani; Catherine Kwik-Uribe; Carl L. Keen; Hagen Schroeter

BACKGROUND Accumulating data show a causal role for flavanols in the mediation of cardiovascular benefits associated with the consumption of flavanol- and procyanidin-containing foods. Evidence for a direct causal role for procyanidins in this context is far less profound due to the poor absorption of procyanidins. However, it has been proposed that procyanidins may break down in the gastrointestinal tract, resulting in monomeric flavanols, which contribute to the systemic flavanol pool. Verification or rejection of this supposition could significantly affect the interpretation of epidemiologic and dietary intervention data and the design of food-content databases. OBJECTIVE We assessed the respective contribution of flavanols and procyanidins to the systemic pool of flavanols and 5-(3,4-dihydroxyphenyl)-γ-valerolactone (γ-VL) in humans. DESIGN Test drinks that contained only flavanols (D1), procyanidins with a degree of polymerization that ranged from 2 to 10 (D2-10), or flavanols and procyanidins with a degree of polymerization that ranged from 2 to 10 (D1-10) were consumed by subjects (n = 12) according to a randomized, double-masked, crossover design. Plasma and urine samples were collected postprandially and analyzed. RESULTS The ingestion of D1-10 resulted in the systemic presence of flavanols (plasma concentration: 863 ± 77 nmol/L), γ-VLs (24-h urine: 93 ± 18 μmol), and minute concentrations of procyanidin B2. With correction for small residual amounts of flavanols present in D2-10, only negligible concentrations of circulating flavanols were detected after ingestion of the drink, whereas the intake of D1 resulted in circulating flavanol concentrations similar to those detected after D1-10 consumption. CONCLUSIONS These outcomes show that dietary procyanidins do not contribute to the systemic pool of flavanols in humans. Thus, these data reject the notion that procyanidins, through their breakdown into flavanols and subsequent absorption, causally modulate vascular function.


Scientific Reports | 2016

The metabolome of [2- 14 C](−)-epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives

Javier I. Ottaviani; Gina Borges; Tony Y. Momma; Jeremy P. E. Spencer; Carl L. Keen; Alan Crozier; Hagen Schroeter

Diet is a major life style factor affecting human health, thus emphasizing the need for evidence-based dietary guidelines for primary disease prevention. While current recommendations promote intake of fruit and vegetables, we have limited understanding of plant-derived bioactive food constituents other than those representing the small number of essential nutrients and minerals. This limited understanding can be attributed to some extent to a lack of fundamental data describing the absorption, distribution, metabolism and excretion (ADME) of bioactive compounds. Consequently, we selected the flavanol (−)-epicatechin (EC) as an example of a widely studied bioactive food constituent and investigated the ADME of [2-14C](−)-epicatechin (300 μCi, 60 mg) in humans (n = 8). We demonstrated that 82 ± 5% of ingested EC was absorbed. We also established pharmacokinetic profiles and identified and quantified >20 different metabolites. The gut microbiome proved to be a key driver of EC metabolism. Furthermore, we noted striking species-dependent differences in the metabolism of EC, an insight with significant consequences for investigating the mechanisms of action underlying the beneficial effects of EC. These differences need to be considered when assessing the safety of EC intake in humans. We also identified a potential biomarker for the objective assessment of EC intake that could help to strengthen epidemiological investigations.


The American Journal of Clinical Nutrition | 2017

Methylxanthines enhance the effects of cocoa flavanols on cardiovascular function: randomized, double-masked controlled studies

Roberto Sansone; Javier I. Ottaviani; Ana Rodriguez-Mateos; Yvonne Heinen; Dorina Noske; Jeremy P. E. Spencer; Alan Crozier; Marc W. Merx; Malte Kelm; Hagen Schroeter; Christian Heiss

BACKGROUND Cocoa flavanol intake, especially that of (-)-epicatechin, has been linked to beneficial effects on human cardiovascular function. However, cocoa also contains the methylxanthines theobromine and caffeine, which may also affect vascular function. OBJECTIVE We sought to determine whether an interaction between cocoa flavanols and methylxanthines exists that influences cocoa flavanol-dependent vascular effects. DESIGN Test drinks that contained various amounts of cocoa flavanols (0-820 mg) and methylxanthines (0-220 mg), either together or individually, were consumed by healthy volunteers (n = 47) in 4 different clinical studies-3 with a randomized, double-masked crossover design and 1 with 4 parallel crossover studies. Vascular status was assessed by measuring flow-mediated vasodilation (FMD), brachial pulse wave velocity (bPWV), circulating angiogenic cells (CACs), and blood pressure before and 2 h after the ingestion of test drinks. RESULTS Although cocoa flavanol intake increased FMD 2 h after intake, the consumption of cocoa flavanols with methylxanthines resulted in a greater enhancement of FMD. Methylxanthine intake alone did not result in statistically significant changes in FMD. Cocoa flavanol ingestion alone decreased bPWV and diastolic blood pressure and increased CACs. Each of these changes was more pronounced when cocoa flavanols and methylxanthines were ingested together. It is important to note that the area under the curve of the plasma concentration of (-)-epicatechin metabolites over time was higher after the co-ingestion of cocoa flavanols and methylxanthines than after the intake of cocoa flavanols alone. Similar results were obtained when pure (-)-epicatechin and the methylxanthines theobromine and caffeine were consumed together. CONCLUSION A substantial interaction between cocoa flavanols and methylxanthines exists at the level of absorption, in which the methylxanthines mediate an increased plasma concentration of (-)-epicatechin metabolites that coincides with enhanced vascular effects commonly ascribed to cocoa flavanol intake. This trial was registered at clinicaltrials.gov as NCT02149238.


The American Journal of Clinical Nutrition | 2015

Safety and efficacy of cocoa flavanol intake in healthy adults: a randomized, controlled, double-masked trial

Javier I. Ottaviani; Marion Balz; Jennifer Kimball; Jodi L. Ensunsa; Reedmond Y. Fong; Tony Y. Momma; Catherine Kwik-Uribe; Hagen Schroeter; Carl L. Keen

BACKGROUND Evidence from dietary intervention studies shows that the intake of flavanols and procyanidins can be beneficial for cardiovascular health. Nevertheless, there is a clear need for advancing our understanding with regard to safe amounts of intake for these bioactives. OBJECTIVE The aim was to investigate in healthy adults the effects of cocoa flavanol (CF) intake amount and intake duration on blood pressure, platelet function, metabolic variables, and potential adverse events (AEs). DESIGN This investigation consisted of 2 parts. Part 1 was an open-label, intake-amount escalation study, in which 34 healthy adults (aged 35-55 y) consumed escalating amounts of CFs, ranging from 1000 to 2000 mg/d over 6 wk. Primary outcomes were blood pressure and platelet function, select metabolic variables, and the occurrence and severity of AEs. Secondary outcomes included plasma concentrations of CF-derived metabolites and methylxanthines. On the basis of the outcomes of study part 1, and assessing the same outcome measures, part 2 of this investigation was a controlled, randomized, double-masked, 2-parallel-arm dietary intervention study in which healthy participants (aged 35-55 y) were asked to consume for 12 consecutive weeks up to 2000 mg CFs/d (n = 46) or a CF-free control (n = 28). RESULTS Daily intake of up to 2000 mg CFs/d for 12 wk was not associated with significant changes in blood pressure or platelet function compared with CF-free controls in normotensive, healthy individuals who exhibited a very low risk of cardiovascular disease. There were no clinically relevant changes in the metabolic variables assessed in either of the groups. AEs reported were classified as mild in severity and did not significantly differ between study arms. CONCLUSION The consumption of CFs in amounts up to 2000 mg/d for 12 wk was well tolerated in healthy men and women. This trial was registered at clinicaltrials.gov as NCT02447770 (part 1) and NCT02447783 (part 2).


Molecular Aspects of Medicine | 2018

Recommending flavanols and procyanidins for cardiovascular health: Revisited

Javier I. Ottaviani; Christian Heiss; Jeremy P. E. Spencer; Malte Kelm; Hagen Schroeter

The last 8 years have seen significant developments in our understanding of dietary flavanols and procyanidins in the context of human health and nutrition. During the same time, recognition of the importance of nutrition in primary disease prevention and health maintenance has increased. In addition, the concept of dietary bioactives (food constituents that although not essential to human life and procreation, may nevertheless play an important role in disease risk reduction, primary disease prevention, and healthy aging) has been created and developed. Applying assessment criteria specific to health maintenance and primary disease prevention, we aimed at broadly evaluating and discussing currently available data on flavanols and procyanidins, with an eye towards potentially advancing the future development of dietary guidelines and public health recommendations. Novel insights and advancements as well as current gaps and shortcomings in our understanding are identified and discussed. While centered on flavanols and procyanidins, the outcomes of this review may also have broader relevance for the further development of the concept of bioactives, and any future framework for the assessment of their role in human health and nutrition.


Scientific Reports | 2018

Evaluation at scale of microbiome-derived metabolites as biomarker of flavan-3-ol intake in epidemiological studies

Javier I. Ottaviani; Redmond Fong; Jennifer Kimball; Jodi L. Ensunsa; Abigail Britten; Debora Me Lucarelli; Robert Luben; Philip B. Grace; Deborah H. Mawson; Amy Tym; Antonia Wierzbicki; Kay-Tee Khaw; Hagen Schroeter; Gunter Georg Kuhnle

The accurate assessment of dietary intake is crucial to investigate the effect of diet on health. Currently used methods, relying on self-reporting and food composition data, are known to have limitations and might not be suitable to estimate the intake of many bioactive food components. An alternative are nutritional biomarkers, which can allow an unbiased assessment of intake. They require a careful evaluation of their suitability, including: (a) the availability of a precise, accurate and robust analytical method, (b) their specificity (c) a consistent relationship with actual intake. We have evaluated human metabolites of a microbiome-derived flavan-3-ol catabolite, 5-(3′,4′-dihydroxyphenyl)-[gamma]-valerolactone (gVL), as biomarker of flavan-3-ol intake in large epidemiological studies. Flavan-3-ols are widely consumed plant bioactives, which have received considerable interest due to their potential ability to reduce CVD risk. The availability of authentic standards allowed the development of a validated high-throughput method suitable for large-scale studies. In dietary intervention studies, we could show that gVL metabolites are specific for flavan-3-ols present in tea, fruits, wine and cocoa-derived products, with a strong correlation between intake and biomarker (Spearman’s r = 0.90). This biomarker will allow for the first time to estimate flavan-3-ol intake and further investigation of associations between intake and disease risk.

Collaboration


Dive into the Javier I. Ottaviani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl L. Keen

University of California

View shared research outputs
Top Co-Authors

Avatar

Christian Heiss

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Tony Y. Momma

University of California

View shared research outputs
Top Co-Authors

Avatar

Cesar G. Fraga

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Alan Crozier

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malte Kelm

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge