Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javier Sánchez-España is active.

Publication


Featured researches published by Javier Sánchez-España.


Applied Geochemistry | 2000

Hydrothermal alteration of felsic volcanic rocks associated with massive sulphide deposition in the northern Iberian Pyrite Belt (SW Spain)

Javier Sánchez-España; Francisco Velasco; Iñaki Yusta

Abstract Massive sulphide deposits of the northern Iberian Pyrite Belt (IPB) are mainly hosted by felsic volcanic rocks of rhyolitic to dacitic composition. Beneath most of the massive ores of this area (e.g., Concepcion, San Miguel, Aguas Tenidas Este or San Telmo deposits) there is usually a wide hydrothermal alteration halo associated with stockwork-type mineralization. Within these alteration envelopes there are two principal rock types: (1) chlorite-rich rocks, linked to the inner and more intensely altered zones and dominantly comprising chlorite+pyrite+quartz+sericite (+carbonate+rutile+zircon+chalcopyrite), and (2) sericite-rich rocks, more common in the peripheral zones and showing a dominant paragenesis of sericite+quartz+pyrite+chlorite (+carbonate+rutile+zircon+sphalerite). Mass-balance calculations comparing altered and least-altered felsic volcanic rocks suggest that sericitization was accompanied by moderate enrichment in Mg, Fe and H 2 O, with depletion in Si, Na and K, and a slight net mass loss of about 3%. Chloritization shows an overall pattern which is similar to that of the sericitic alteration, but with large gains in Fe, Mg and H 2 O (and minor enrichment in Si, S and Mn), and a significant loss of Na and K and a minor loss of Ca and Rb. However, chloritization has involved a much larger net mass change (mass gain of about 28%). Only a few elements such as Nb, Y, Zr, Ti, P and LREE appear to have remained inert during hydrothermal alteration, whilst Ti and Al have undergone very minor mobilization. The results point to the severity of the physico-chemical conditions that prevailed during the waxing stage of the ore-forming hydrothermal systems. Further, mineralogical and geochemical studies of the altered footwall rocks in the studied deposits indicate that hydrothermal ore-bearing fluids reacted with host rocks in a multi-stage process which produced a succession of mineralogical and chemical changes as the temperature increased.


FEMS Microbiology Ecology | 2014

New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes

Carmen Falagán; Javier Sánchez-España; David Barrie Johnson

The indigenous microbial communities of two extremely acidic, metal-rich stratified pit lakes, located in the Iberian Pyrite Belt (Spain), were identified, and their roles in mediating transformations of carbon, iron, and sulfur were confirmed. A combined cultivation-based and culture-independent approach was used to elucidate microbial communities at different depths and to examine the physiologies of isolates, which included representatives of at least one novel genus and several species of acidophilic Bacteria. Phosphate availability correlated with redox transformations of iron, and this (rather than solar radiation) dictated where primary production was concentrated. Carbon fixed and released as organic compounds by acidophilic phototrophs acted as electron donors for acidophilic heterotrophic prokaryotes, many of which catalyzed the dissimilatory reduction in ferric iron; the ferrous iron generated was re-oxidized by chemolithotrophic acidophiles. Bacteria that catalyze redox transformations of sulfur were also identified, although these Bacteria appeared to be less abundant than the iron oxidizers/reducers. Primary production and microbial numbers were greatest, and biogeochemical transformation of carbon, iron, and sulfur, most intense, within a zone of c. 8-10 m depth, close to the chemocline, in both pit lakes. Archaea detected in sediments included two Thaumarchaeota clones, indicating that members of this recently described phylum can inhabit extremely acidic environments.


Environmental Science & Technology | 2014

Extreme carbon dioxide concentrations in acidic pit lakes provoked by water/rock interaction.

Javier Sánchez-España; Bertram Boehrer; Iñaki Yusta

We quantify the gas pressure and concentration of a gas-charged acidic pit lake in SW Spain. We measured total dissolved gas pressure, carbon dioxide (CO2) concentration, major ion concentration, isotopic composition of dissolved inorganic carbon (δ(13)C(DIC)), and other physicochemical parameters. CO2 is the dominant dissolved gas in this lake and results mainly from carbonate dissolution during the interaction of acidic water with wall rocks, followed by diffusive and advective transport through the water column. The δ(13)C(DIC) values suggest that the biological contribution is comparatively small. Maximum CO2 concentrations higher than 0.1 M (∼5000 mg/L) have been measured, which are only comparable to those found in volcanic crater lakes. The corresponding gas pressures of CO2 alone (pCO2 ∼3.6 bar) imply 60% saturation relative to local pressure at 50 m depth. High CO2 concentrations have been observed in other pit lakes of the region. We recommend gas-specific monitoring in acidic pit lakes and, if necessary, the design of feasible degassing strategies.


Mineralogical Magazine | 2012

Schwertmannite to jarosite conversion in the water column of an acidic mine pit lake

Javier Sánchez-España; Iñaki Yusta; G. A. López

Abstract Ferric precipitates in the water column at the San Telmo acidic mine pit lake in the Iberian Pyrite Belt, southwest Spain, have been studied by scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry and other complementary techniques. These Fe(III) precipitates were recovered from sediment traps which were left at different depths (25, 35, 40 and 100 m) in the lake for several months. Seasonal variations in the water chemistry were recorded to link the mineralogical findings to vertical and temporal changes in aqueous composition. The results indicate that schwertmannite is the first Fe(III) mineral to crystallize after the oxidation of Fe(II), in agreement with previous studies. Schwertmannite is kinetically favoured in comparison to other Fe(III) minerals, and it buffers the pH at 2.6-3.0. It is metastable, and alters to a (H3O+)- and (K+)-bearing jarosite (containing 58 mol.% H3O+ and 42 mol.% K+ on average) at lower pH (e.g. at pH 2.2-2.5 in the summer season), either in the water column (during settling) and/or in the benthic sediments, in a time period of weeks to months. The extent of hydronium substitution at the alkali site in the jarosite reflects the higher activity of free aqueous protons in solution (10-2.2 to 10-3.0) in comparison to the activities of K+ (10-4.5) and Na+ (10-3.2). Microscopic examination of mixed schwertmannite-jarosite precipitates found in the water column suggest that some textural and compositional features of metastable schwertmannite (e.g. the internal ‘pincushion’ arrangement and incorporation of trace amounts of Mg, Al, As and Pb) are conserved in the jarosite during the early stages of the mineralogical transformation, but many of these relics are lost in the later stages of crystal growth. Despite the hydronium-rich nature of the jarosite solid solution, this material is also an important sink for K+, which decreases in concentration with decreasing pH unlike most of the other major cations in the water column (notably Na+, Mg2+, Ca2+, Al3+, Fe3+, Cu2+, Zn2+). In addition to the release of Fe3+ to the aqueous solution, the conversion of schwertmannite to (H3O+, K+)-bearing jarosite consumes protons and thus may represent an additional pH control at San Telmo and other acidic mine pit lakes of the area.


Environmental Science & Technology | 2014

Thermodynamic Controls on the Kinetics of Microbial Low-pH Fe(II) Oxidation

Lance N. Larson; Javier Sánchez-España; Bradley Kaley; Yizhi Sheng; Kyle Bibby; William D. Burgos

Acid mine drainage (AMD) is a major worldwide environmental threat to surface and groundwater quality. Microbial low-pH Fe(II) oxidation could be exploited for cost-effective AMD treatment; however, its use is limited because of uncertainties associated with its rate and ability to remove Fe from solution. We developed a thermodynamic-based framework to evaluate the kinetics of low-pH Fe(II) oxidation. We measured the kinetics of low-pH Fe(II) oxidation at five sites in the Appalachian Coal Basin in the US and three sites in the Iberian Pyrite Belt in Spain and found that the fastest rates of Fe(II) oxidation occurred at the sites with the lowest pH values. Thermodynamic calculations showed that the Gibbs free energy of Fe(II) oxidation (ΔG(oxidation)) was also most negative at the sites with the lowest pH values. We then conducted two series of microbial Fe(II) oxidation experiments in laboratory-scale chemostatic bioreactors operated through a series of pH values (2.1-4.2) and found the same relationships between Fe(II) oxidation kinetics, ΔG(oxidation), and pH. Conditions that favored the fastest rates of Fe(II) oxidation coincided with higher Fe(III) solubility. The solubility of Fe(III) minerals, thus plays an important role on Fe(II) oxidation kinetics. Methods to incorporate microbial low-pH Fe(II) oxidation into active and passive AMD treatment systems are discussed in the context of these findings. This study presents a simplified model that describes the relationship between free energy and microbial kinetics and should be broadly applicable to many biogeochemical systems.


Science of The Total Environment | 2016

Quantifying, assessing and removing the extreme gas load from meromictic Guadiana pit lake, Southwest Spain

Bertram Boehrer; Iñaki Yusta; Katrin Magin; Javier Sánchez-España

High gas charges in deep waters of lakes can represent a hazard to the lives of human beings and animals in the surrounding. As this danger was feared, we quantified the amount of dissolved gas in Guadiana pit lake (Las Herrerías, Huelva; southwest Spain) and documented the temporal evolution over a period of two years. Gas pressure due to dissolved gases, such as carbon dioxide, methane and nitrogen was measured. Based on these data, we assessed the risk and the associated danger of limnic eruptions from the lake and concluded that the present situation cannot be considered safe. By deploying a vertical pipe, the updraft of degassing water was tested and demonstrated: the pilot plant provided enough energy to drive a self-sustained flow. Such a system could be implemented to remove the extreme gas pressure from the deep water. Measurements of discharges could be extrapolated to indicate the size for an efficient plant for the gas removal. The construction of such a system would be technically and economically viable. A reintroduction of degassed water into the monimolimnion would be advisable.


Mineralogical Magazine | 2015

Low-crystallinity products of trace-metal precipitation in neutralized pit-lake waters without ferric and aluminous adsorbent: Geochemical modelling and mineralogical analysis

Javier Sánchez-España; Iñaki Yusta

Abstract The removal of dissolved trace metals during neutralization of acid mine drainage has usually been described and modelled as a progressive, pH-dependent sorption onto standard ferric or aluminous adsorbent. In the absence of adsorbent mineral surfaces, trace metals tend to form amorphous to lowcrystallinity compounds which are often difficult to characterize. Here, we study the behaviour of the more soluble metals (Cu2+, Zn2+, Mn2+, Co2+, Ni2+, Cd2+) in the absence of ferric and aluminous adsorbent by neutralization experiments with waters from two acidic pit lakes. The objectives of our study were to identify the mineral products formed by trace-metal precipitation and the pH ranges at which these metals are removed from the solutions. Both geochemical modelling and detailed mineralogical and chemical analyses (XRD, SEM, TEM, XRF, ICP-AES) were undertaken to characterize the products. The schwertmannite and hydrobasaluminite colloids formed in the initial neutralization stages were removed from the waters at pH 3.5 and 5.1, respectively. These two minerals had previously adsorbed the Cr3+ and Pb2+ initially present in the solutions. The Cu precipitates were amorphous to X-rays, though chemical and modelling data suggest that Cu probably precipitated as a precursor of brochantite (Cu4(SO4)(OH)6·2H2O) at pH >6.0, together with minor quantities of other Cu hydroxysulfates (langite, antlerite) and Cu(OH)2. At higher pH, other divalent metals (Zn2+, Mn2+) precipitated as silicates, carbonates and/or (possibly) minor oxides and (oxy)hydroxides. The high concentration of aqueous SiO2 in the solutions allowed Zn to precipitate as willemite (Zn2SiO4) at pH >7.0. Similarly, the presence of inorganic carbon (originally as CO2 (aq.)) greatly influenced the nature of the corresponding precipitate of Mn. This metal was initially present as Mn2+ and experienced a partly oxidative precipitation forming, in combination with Mg2+, the hydroxyl carbonate desautelsite (Mg6Mn2(CO3)(OH)16·4H2O) at pH 9.0-10.0. The formation of Mn3+/ Mn4+ oxides and hydroxides (hausmannite, manganite, birnessite) could not be demonstrated, although geochemical calculations support their subordinate formation. Other metallic cations such as Co2+, Ni2+ and Cd2+ did not form discrete mineral phases but were totally removed by sorption onto and/or incorporation into the cited Zn and Mn compounds. The discrepancies between theoretical and demonstrated mineralogy and the significance of these minerals for future pit-lake remediation initiatives are discussed.


Archive | 2017

Meromictic Pit Lakes: Case Studies from Spain, Germany and Canada and General Aspects of Management and Modelling

Martin Schultze; Bertram Boehrer; Katrin Wendt-Potthoff; Javier Sánchez-España; Devin Castendyk

Pit lakes are artificial lakes, which form in voids of opencasts. Geochemically different inflows and steep lake basins make pit lakes more prone to meromixis than natural lakes. Mining, environmental legislation and often the poor water quality, mainly due to acidification, require detailed planning and management of pit lakes.


Environmental Microbiology | 2007

Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems.

Owen F. Rowe; Javier Sánchez-España; Kevin B. Hallberg; D. Barrie Johnson


Applied Geochemistry | 2011

Schwertmannite and hydrobasaluminite: A re-evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes

Javier Sánchez-España; Iñaki Yusta; Marta Diez-Ercilla

Collaboration


Dive into the Javier Sánchez-España's collaboration.

Top Co-Authors

Avatar

Iñaki Yusta

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Francisco Velasco

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

William D. Burgos

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Diez-Ercilla

Instituto Geológico y Minero de España

View shared research outputs
Top Co-Authors

Avatar

Bertram Boehrer

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Lance N. Larson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Katrin Wendt-Potthoff

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Aida Chaos

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Ana Navas

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge