Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay Garland is active.

Publication


Featured researches published by Jay Garland.


Applied and Environmental Microbiology | 2002

Influence of Elevated CO2 on the Fungal Community in a Coastal Scrub Oak Forest Soil Investigated with Terminal-Restriction Fragment Length Polymorphism Analysis

Morten Klamer; Michael S. Roberts; Lanfang H. Levine; Bert G. Drake; Jay Garland

ABSTRACT Sixteen open-top chambers (diameter, 3.66 m) were established in a scrub oak habitat in central Florida where vegetation was removed in a planned burn prior to chamber installation. Eight control chambers have been continuously exposed to ambient air and eight have been continuously exposed to elevated CO2 at twice-ambient concentration (∼700 ppm) for 5 years. Soil cores were collected from each chamber to examine the influence of elevated atmospheric CO2 on the fungal community in different soil fractions. Each soil sample was physically fractionated into bulk soil, rhizosphere soil, and roots for separate analyses. Changes in relative fungal biomass were estimated by the ergosterol technique. In the bulk soil and root fractions, a significantly increased level of ergosterol was detected in the elevated CO2 treatments relative to ambient controls. Fungal community composition was determined by terminal-restriction fragment length polymorphism (T-RFLP) analysis of the internal transcribed spacer (ITS) region. The specificities of different ITS primer sets were evaluated against plant and fungal species isolated from the experimental site. Changes in community composition were assessed by principal component analyses of T-RFLP profiles resolved by capillary electrophoresis. Fungal species richness, defined by the total number of terminal restriction fragments, was not significantly affected by either CO2 treatment or soil fraction.


Journal of Food Protection | 2005

Variability of virus attachment patterns to butterhead lettuce.

Everardo Vega; Jeanon Smith; Jay Garland; Anabelle Matos; Suresh D. Pillai

Enteric viruses account for most foodborne illness in the United States. The objective of this study was to determine whether the isoelectric point (pI) of viruses such as feline calicivirus (FCV), echovirus 11, and bacteriophages phiX174 and MS2 had any effect on their attachment to butterhead lettuce. The adsorption of virus particles to the lettuce was variable. Bacteriophage MS2 was the only virus that fit the current Derjaguin-Landau-Verway-Overbeek model of virus attachment. Echovirus 11 had the highest affinity to lettuce surface. Echovirus 11 appeared to exhibit reversible attachment above its pI, whereas below its pI strong adsorption was observed. Adsorption of FCV was at its maximum above its pI. Bacteriophage phiX174 exhibited the most complex adsorption pattern, with attachment occurring only at the pH extremes (pH 3.0 and 8.0). These results suggest the current model for virus adsorption to sediment does not adequately explain the attachment of virus to lettuce. Importantly, the results indirectly suggest that current sample processing methods to recover viruses from lettuce may differentially select for the recovery of only certain virus types.


Microbial Ecology | 2005

Effects of microbial community diversity on the survival of Pseudomonas aeruginosa in the wheat rhizosphere.

Anabelle Matos; L. Kerkhof; Jay Garland

Ecological theory suggests that microbial communities with greater microbial diversity would be less susceptible to invasion by potential opportunistic pathogens. We investigated whether the survival of the opportunistic pathogen Pseudomonas aeruginosa in the wheat rhizosphere would be affected by the presence of natural and constructed microbial communities of various diversity levels. Three levels of microbial community diversity were derived from wheat roots by a dilution/extinction approach. These wheat rhizosphere inocula, as well as a gnotobiotic microbial community consisting of seven culturable wheat rhizobacterial isolates, were introduced into the nutrient solution of hydroponically grown wheat plants on the day of planting. Phenotypic characterization of the culturable microbial communities on R2A medium, Shannon microbial diversity index, community-level physiological profiles, and terminal restriction fragment length polymorphisms were used to assess the varying microbial diversity levels. At day 7 the roots were invaded with P. aeruginosa and the number of P. aeruginosa colony forming units per root were measured at day 14. The average number of surviving P. aeruginosa cells was 3.52, 4.90, 7.18, 6.65 log10 cfu/root in the high, medium, low, and gnotobiotic microbial community diversity level treatments, respectively. The invasibility of the rhizosphere communities by P. aeruginosa was inversely related to the level of diversity from the dilution extinction gradient. The gnotobiotic community did not confer protection against P. aeruginosa invasion. Although these data indicate that invasibility is inversely related to diversity, further study is needed to both reproduce these findings and define the specific mechanisms of the diversity effect.


Journal of Food Protection | 2005

Effects of community versus single strain inoculants on the biocontrol of Salmonella and microbial community dynamics in alfalfa sprouts.

Anabelle Matos; Jay Garland

Potential biological control inoculants, Pseudomonas fluorescens 2-79 and microbial communities derived from market sprouts or laboratory-grown alfalfa sprouts, were introduced into alfalfa seeds with and without a Salmonella inoculum. We examined their ability to inhibit the growth of this foodborne pathogen and assess the relative effects of the inoculants on the alfalfa microbial community structure and function. Alfalfa seeds contaminated with a Salmonella cocktail were soaked for 2 h in bacterial suspensions from each inoculant tested. Inoculated alfalfa seeds were grown for 7 days and sampled during days 1, 3, and 7. At each sampling, alfalfa sprouts were sonicated for 7 min to recover microflora from the surface, and the resulting suspensions were diluted and plated on selective and nonselective media. Total bacterial counts were obtained using acridine orange staining, and the percentage culturability was calculated. Phenotypic potential of sprout-associated microbial communities inoculated with biocontrol treatments was assessed using community-level physiological profiles based on patterns of use of 95 separate carbon sources in Biolog plates. Community-level physiological profiles were also determined using oxygen-sensitive fluorophore in BD microtiter plates to examine functional patterns in these communities. No significant differences in total and mesophilic aerobe microbial cell density or microbial richness resulting from the introduction of inoculants on alfalfa seeds with and without Salmonella were observed. P. fluorescens 2-79 exhibited the greatest reduction in the growth of Salmonella early during alfalfa growth (4.22 log at day 1), while the market sprout inoculum had the reverse effect, resulting in a maximum log reduction (5.48) of Salmonella on day 7. Community-level physiological profiles analyses revealed that market sprout communities peaked higher and faster compared with the other inoculants tested. These results suggest that different modes of actions of single versus microbial consortia biocontrol treatments may be involved.


Journal of Food Protection | 2008

Electrostatic forces control nonspecific virus attachment to lettuce.

Everardo Vega; Jay Garland; Suresh D. Pillai

Enteric viruses are key foodborne pathogens. The objective of this study was to compare the relative contributions of electrostatic and hydrophobic forces with the nonspecific attachment of virus to butterhead lettuce. The attachment of four viruses (echovirus 11, feline calicivirus [FCV], MS2, and phiX174) was studied. Three different conditions, namely (i) 1% Tween 80, (ii) 1 M NaCl, and (iii) 1% Tween 80 with 1 M NaCl, were investigated to determine the role of hydrophobic, electrostatic, and combined hydrophobic and electrostatic forces, respectively. Attachment above the pI of FCV and echovirus 11 was reduced or eliminated in the presence of NaCl, indicating an electrostatic interaction between the animal viruses and lettuce. The bacteriophage phiX174 was not significantly affected by any treatment, indicating a lack of electrostatic or hydrophobic interactions between the lettuce and phage phiX174. Overall, 1 M NaCl was the most effective treatment in desorbing viruses from the surface of lettuce at pH 7 and 8. The results imply that electrostatic forces play a major role in controlling virus adsorption to lettuce. The results indicate that 1 M NaCl solution would improve the recovery or elution of unenveloped viruses from lettuce.


Nature microbiology | 2016

An assessment of US microbiome research.

Elizabeth Stulberg; Deborah Fravel; Lita M. Proctor; David M. Murray; Jonathan LoTempio; Linda Chrisey; Jay Garland; Kelly Goodwin; Joseph Graber; M. Camille Harris; Scott Jackson; Michael Mishkind; D. Marshall Porterfield; Angela Records

Genome-enabled technologies have supported a dramatic increase in our ability to study microbial communities in environments and hosts. Taking stock of previously funded microbiome research can help to identify common themes, under-represented areas and research priorities to consider moving forward. To assess the status of US microbiome research, a team of government scientists conducted an analysis of federally funded microbiome research. Microbiomes were defined as host-, ecosystem- or habitat-associated communities of microorganisms, and microbiome research was defined as those studies that emphasize community-level analyses using ’omics technologies. Single pathogen, single strain and culture-based studies were not included, except symbiosis studies that served as models for more complex communities. Fourteen governmental organizations participated in the data call. The analysis examined three broad research themes, eight environments and eight microbial categories. Human microbiome research was larger than any other environment studied, and the basic biology research theme accounted for half of the total research activities. Computational biology and bioinformatics, reference databases and biorepositories, standardized protocols and high-throughput tools were commonly identified needs. Longitudinal and functional studies and interdisciplinary research were also identified as needs. This study has implications for the funding of future microbiome research, not only in the United States but beyond.


international conference on evolvable systems | 2004

Design and Preliminary Evaluation of a Novel Gravity Independent Rotating Biological Membrane Reactor

Tony Rector; Jay Garland; Richard F. Strayer; Lanfang H. Levine; Michael S. Roberts; Mary Hummerick

The integration of membrane-aeration technology with biological water processors has direct application to wastewater treatment in microgravity because of the ability to diffuse gases across the membrane without two-phase interactions (gas-liquid). Membrane-aeration bioreactors have demonstrated the ability to deliver a terminal electron acceptor (O 2 ) and substrates (CH 4 and H 2 ) to biofilms attached to the membrane surface. However, the process performance of these systems has been limited by mass transfer constraints. A novel bubbleless membrane-aeration bioreactor was design and tested at Kennedy Space Center. The Aerobic Rotational Membrane System (ARMS) consists of a rotational membrane module inside of a pressurized reactor vessel. Rotation of the membrane module enables a reduction in the mass transfer resistance coefficients associated with both the membrane/liquid boundary layer (k La ) and constituents in the bulk liquid, and it equalizes the concentration gradient across the bioreactor allowing for uniform biofilm formation and decreased bulk liquid O 2 transfer. Preliminary engineering tests have been conducted to determine the effect of key operational parameters (i.e. rotational speed, superficial velocity) on O 2 flux rates and hydrodynamic characteristics within the ARMS. This paper presents the ARMS design and results of the preliminary engineering tests.


Journal of Food Protection | 2002

Composition and physiological profiling of sprout-associated microbial communities

Anabelle Matos; Jay Garland; William F. Fett

The native microfloras of various types of sprouts (alfalfa, clover, sunflower, mung bean, and broccoli sprouts) were examined to assess the relative effects of sprout type and inoculum factors (i.e., sprout-growing facility, seed lot, and inoculation with sprout-derived inocula) on the microbial community structure of sprouts. Sprouts were sonicated for 7 min or hand shaken with glass beads for 2 min to recover native microfloras from the surface, and the resulting suspensions were diluted and plated. The culturable fraction was characterized by the density (log CFU/g), richness (e.g., number of types of bacteria), and diversity (e.g., microbial richness and evenness) of colonies on tryptic soy agar plates incubated for 48 h at 30 degrees C. The relative similarity between sprout-associated microbial communities was assessed with the use of community-level physiological profiles (CLPPs) based on patterns of utilization of 95 separate carbon sources. Aerobic plate counts of 7.96 +/- 0.91 log CFU/g of sprout tissue (fresh weight) were observed, with no statistically significant differences in microbial cell density, richness, or diversity due to sprout type, sprout-growing facility, or seed lot. CLPP analyses revealed that the microbial communities associated with alfalfa and clover sprouts are more similar than those associated with the other sprout types tested. Variability among sprout types was more extensive than any differences between microbial communities associated with alfalfa and clover sprouts from different sprout-growing facilities and seed lots. These results indicate that the subsequent testing of biocontrol agents should focus on similar organisms for alfalfa and clover, but alternative types may be most suitable for the other sprout types tested. The inoculation of alfalfa sprouts with communities derived from various sprout types had a significant, source-independent effect on microbial community structure, indicating that the process of inoculation alters the dynamics of community development regardless of the types of organisms involved.


Microbial Ecology | 2004

Microbial Astronauts: Assembling Microbial Communities for Advanced Life Support Systems

Michael S. Roberts; Jay Garland; Aaron L. Mills

Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments “everything is everywhere” given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem processes in the space environment.


Biotechnology and Bioengineering | 2011

Cell-mediated deposition of porous silica on bacterial biofilms

David Benjamin Jaroch; Eric S. McLamore; Wen Zhang; Jin Shi; Jay Garland; M. Katherine Banks; D. Marshall Porterfield; Jenna L. Rickus

Living hybrid materials that respond dynamically to their surrounding environment have important applications in bioreactors. Silica based sol-gels represent appealing matrix materials as they form a mesoporous biocompatible glass lattice that allows for nutrient diffusion while firmly encapsulating living cells. Despite progress in sol-gel cellular encapsulation technologies, current techniques typically form bulk materials and are unable to generate regular silica membranes over complex geometries for large-scale applications. We have developed a novel biomimetic encapsulation technique whereby endogenous extracellular matrix molecules facilitate formation of a cell surface specific biomineral layer. In this study, monoculture Pseudomonas aeruginosa and Nitrosomonas europaea biofilms are exposed to silica precursors under different acid conditions. Scanning electron microscopy (SEM) imaging and electron dispersive X-ray (EDX) elemental analysis revealed the presence of a thin silica layer covering the biofilm surface. Cell survival was confirmed 30 min, 30 days, and 90 days after encapsulation using confocal imaging with a membrane integrity assay and physiological flux measurements of oxygen, glucose, and NH 4⁺. No statistical difference in viability, oxygen flux, or substrate flux was observed after encapsulation in silica glass. Shear induced biofilm detachment was assessed using a particle counter. Encapsulation significantly reduced detachment rate of the biofilms for over 30 days. The results of this study indicate that the thin regular silica membrane permits the diffusion of nutrients and cellular products, supporting continued cellular viability after biomineralization. This technique offers a means of controllably encapsulating biofilms over large surfaces and complex geometries. The generic deposition mechanism employed to form the silica matrix can be translated to a wide range of biological material and represents a platform encapsulation technology.

Collaboration


Dive into the Jay Garland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. J. Hurst

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

David A. Lipson

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anabelle Matos

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge