Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lanfang H. Levine is active.

Publication


Featured researches published by Lanfang H. Levine.


Applied and Environmental Microbiology | 2002

Influence of Elevated CO2 on the Fungal Community in a Coastal Scrub Oak Forest Soil Investigated with Terminal-Restriction Fragment Length Polymorphism Analysis

Morten Klamer; Michael S. Roberts; Lanfang H. Levine; Bert G. Drake; Jay Garland

ABSTRACT Sixteen open-top chambers (diameter, 3.66 m) were established in a scrub oak habitat in central Florida where vegetation was removed in a planned burn prior to chamber installation. Eight control chambers have been continuously exposed to ambient air and eight have been continuously exposed to elevated CO2 at twice-ambient concentration (∼700 ppm) for 5 years. Soil cores were collected from each chamber to examine the influence of elevated atmospheric CO2 on the fungal community in different soil fractions. Each soil sample was physically fractionated into bulk soil, rhizosphere soil, and roots for separate analyses. Changes in relative fungal biomass were estimated by the ergosterol technique. In the bulk soil and root fractions, a significantly increased level of ergosterol was detected in the elevated CO2 treatments relative to ambient controls. Fungal community composition was determined by terminal-restriction fragment length polymorphism (T-RFLP) analysis of the internal transcribed spacer (ITS) region. The specificities of different ITS primer sets were evaluated against plant and fungal species isolated from the experimental site. Changes in community composition were assessed by principal component analyses of T-RFLP profiles resolved by capillary electrophoresis. Fungal species richness, defined by the total number of terminal restriction fragments, was not significantly affected by either CO2 treatment or soil fraction.


Journal of Plant Physiology | 2001

Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply.

Guntur V. Subbarao; Raymond M. Wheeler; Lanfang H. Levine; G.W. Stutte

Exposure of plants to sodium (Na) and salinity may increase glycine betaine accumulation in tissues. To study this, red-beet cvs. Scarlet Supreme and Ruby Queen, were grown for 42 days in a growth chamber using a re-circulating nutrient film technique with 0.25 mmol/L K and either 4.75 mmol/L (control) or 54.75 mmol/L (saline) Na (as NaCl). Plants were harvested at weekly intervals and measurements were taken on leaf water relations, leaf photosynthetic rates, chlorophyll fluorescence, chlorophyll levels, glycine betaine levels, and tissue elemental composition. Glycine betaine accumulation increased under salinity and this accumulation correlated with higher tissue levels of Na in both cultivars. Na accounted for 80 to 90% of the total cation uptake under the saline treatment. At final harvest (42 days), K concentrations in laminae ranged from approximately 65-95 micromoles g-1 dry matter (DM), whereas Na in shoot tissue ranged from approximately 3000-4000 micromoles g-1. Leaf sap osmotic potential at full turgor [psi(s100)] increased as lamina Na content increased. Glycine betaine levels of leaf laminae showed a linear relationship with leaf sap [psi(s100)]. Chlorophyll levels, leaf photosynthetic rates, and chlorophyll fluorescence were not affected by Na levels. These results suggest that the metabolic tolerance to high levels of tissue Na in red-beet could be due to its ability to synthesize and regulate glycine betaine production, and to control partitioning of Na and glycine betaine between the vacuole and the cytoplasm.


Journal of Plant Nutrition | 1999

How far can sodium substitute for potassium in red beet

G. V. Subbarao; R.M. Wheeler; G.W. Stutte; Lanfang H. Levine

Sodium (Na) movement between plants and humans is one of the more critical aspects of bioregenerative systems of life support, which NASA is studying for the establishment of long-term bases on the Lunar or Martian surface. This study was conducted to determine the extent to which Na can replace potassium (K) in red beet (Beta vulgaris L. ssp vulgaris) without adversely affecting metabolic functions such as water relations, photosynthetic rates, and thus growth. Two cultivars, Ruby Queen and Klein Bol, were grown for 42 days at 1200 micromoles mol-1 CO2 in a growth chamber using a re-circulating nutrient film technique with 0%, 75%, 95%, and 98% Na substitution for K in a modified half-strength Hoagland solution. Total biomass of Ruby Queen was greatest at 95% Na substitution and equal at 0% and 98% Na substitution. For Klein Bol, there was a 75% reduction in total biomass at 98% Na substitution. Nearly 95% of the total plant K was replaced with Na at 98% Na substitution in both cultivars. Potassium concentrations in leaves decreased from 120 g kg-1 dwt in 0% Na substitution to 3.5 g kg-1 dwt at 98% Na substitution. Leaf chlorophyll concentration, photosynthetic rate, and osmotic potential were not affected in either cultivar by Na substitution for K. Leaf glycinebetaine levels were doubled at 75% Na substitution in Klein Bol, but decreased at higher levels of Na substitution. For Ruby Queen, glycinebetaine levels in leaf increased with the first increase of Na levels and were maintained at the higher Na levels. These results indicate that in some cultivars of red beet, 95% of the normal tissue K can be replaced by Na without a reduction in growth.


Applied and Environmental Microbiology | 2003

Community-Level Physiological Profiling Performed with an Oxygen-Sensitive Fluorophore in a Microtiter Plate

Jay L. Garland; Michael S. Roberts; Lanfang H. Levine; Aaron L. Mills

ABSTRACT Community-level physiological profiling based upon fluorometric detection of oxygen consumption was performed on hydroponic rhizosphere and salt marsh litter samples by using substrate levels as low as 50 ppm with incubation times between 5 and 24 h. The rate and extent of response were increased in samples acclimated to specific substrates and were reduced by limiting nitrogen availability in the wells.


Microbial Ecology | 2006

Effect of Microbial Species Richness on Community Stability and Community Function in a Model Plant-Based Wastewater Processing System

Kimberly L. Cook; Jay L. Garland; Alice C. Layton; Hebe M. Dionisi; Lanfang H. Levine; Gary S. Sayler

Microorganisms will be an integral part of biologically based waste processing systems used for water purification or nutrient recycling on long-term space missions planned by the National Aeronautics and Space Administration. In this study, the function and stability of microbial inocula of different diversities were evaluated after inoculation into plant-based waste processing systems. The microbial inocula were from a constructed community of plant rhizosphere-associated bacteria and a complexity gradient of communities derived from industrial wastewater treatment plant-activated sludge. Community stability and community function were defined as the ability of the community to resist invasion by a competitor (Pseudomonas fluorescens 5RL) and the ability to degrade surfactant, respectively. Carbon source utilization was evaluated by measuring surfactant degradation and through Biolog and BD oxygen biosensor community level physiological profiling. Community profiles were obtained from a 16S–23S rDNA intergenic spacer region array. A wastewater treatment plant-derived community with the greatest species richness was the least susceptible to invasion and was able to degrade surfactant to a greater extent than the other complexity gradient communities. All communities resisted invasion by a competitor to a greater extent than the plant rhizosphere isolate constructed community. However, the constructed community degraded surfactant to a greater extent than any of the other communities and utilized the same number of carbon sources as many of the other communities. These results demonstrate that community function (carbon source utilization) and community stability (resistance to invasion) are a function of the structural composition of the community irrespective of species richness or functional richness.


Journal of Chromatography A | 2000

Determination of anionic surfactants during wastewater recycling process by ion pair chromatography with suppressed conductivity detection.

Lanfang H. Levine; Jennifer Judkins; Jay L. Garland

A direct approach utilizing ion pairing reversed-phase chromatography coupled with suppressed conductivity detection was developed to monitor biodegradation of anionic surfactants during wastewater recycling through hydroponic plant growth systems and fixed-film bioreactors. Samples of hydroponic nutrient solution and bioreactor effluent with high concentrations (up to 120 mS electrical conductance) of inorganic ions can be analyzed without pretreatment or interference. The presence of non-ionic surfactants did not significantly affect the analysis. Dynamic linear ranges for tested surfactants [Igepon TC-42, ammonium lauryl sulfate, sodium laureth sulfate and sodium alkyl (C10-C16) ether sulfate] were 2 to approximately 500, 1 to approximately 500, 2.5 to approximately 550 and 3.0 to approximately 630 microg/ml, respectively.


Journal of Chemical Ecology | 2009

Bacterial Attraction and Quorum Sensing Inhibition in Caenorhabditis elegans Exudates

Fatma Kaplan; Dayakar V. Badri; Cherian Zachariah; Ramadan Ajredini; Francisco J. Sandoval; Sanja Roje; Lanfang H. Levine; Fengli Zhang; Steven L. Robinette; Hans T. Alborn; Wei Zhao; Michael Stadler; Rathika Nimalendran; Aaron T. Dossey; Rafael Brüschweiler; Jorge M. Vivanco; Arthur S. Edison

Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to interact chemically with its environment or as defense. C. elegans exudates were analyzed by using several analytical methods and found to contain 36 common metabolites that include organic acids, amino acids, and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and Escherichia coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Pseudomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, thus demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems.


international conference on evolvable systems | 2004

Design and Preliminary Evaluation of a Novel Gravity Independent Rotating Biological Membrane Reactor

Tony Rector; Jay Garland; Richard F. Strayer; Lanfang H. Levine; Michael S. Roberts; Mary Hummerick

The integration of membrane-aeration technology with biological water processors has direct application to wastewater treatment in microgravity because of the ability to diffuse gases across the membrane without two-phase interactions (gas-liquid). Membrane-aeration bioreactors have demonstrated the ability to deliver a terminal electron acceptor (O 2 ) and substrates (CH 4 and H 2 ) to biofilms attached to the membrane surface. However, the process performance of these systems has been limited by mass transfer constraints. A novel bubbleless membrane-aeration bioreactor was design and tested at Kennedy Space Center. The Aerobic Rotational Membrane System (ARMS) consists of a rotational membrane module inside of a pressurized reactor vessel. Rotation of the membrane module enables a reduction in the mass transfer resistance coefficients associated with both the membrane/liquid boundary layer (k La ) and constituents in the bulk liquid, and it equalizes the concentration gradient across the bioreactor allowing for uniform biofilm formation and decreased bulk liquid O 2 transfer. Preliminary engineering tests have been conducted to determine the effect of key operational parameters (i.e. rotational speed, superficial velocity) on O 2 flux rates and hydrodynamic characteristics within the ARMS. This paper presents the ARMS design and results of the preliminary engineering tests.


Journal of Plant Nutrition | 2000

Low potassium enhances sodium uptake in red-beet under moderate saline conditions

Guntur V. Subbarao; R.M. Wheeler; G.W. Stutte; Lanfang H. Levine

Abstract Due to the discrepancy in metabolic sodium (Na) requirements between plants and animals, cycling of Na between humans and plants is limited and critical to the proper functioning of bio‐regenerative life support systems, being considered for long‐term human habitats in space (e.g., Martian bases). This study was conducted to determine the effects of limited potassium (K) on growth, Na uptake, photosynthesis, ionic partitioning, and water relations of red‐beet (Beta vulgaris L. ssp. vulgaris) under moderate Na‐saline conditions. Two cultivars, Klein Bol, and Ruby Queen were grown for 42 days in a growth chamber using a re‐circulating nutrient film technique where the supplied K levels were 5.0, 1.25, 0.25, and 0.10 mM in a modified half‐strength Hoagland solution salinized with 50 mM NaCl. Reducing K levels from 5.0 to 0.10 mM quadrupled the Na uptake, and lamina Na levels reached ‐20 g kg−1 dwt. Lamina K levels decreased from ‐60 g kg−1 dwt at 5.0 mM K to ‐4.0 g kg−1 dwt at 0.10 mM K. Ruby Queen and Klein Bol responded differently to these changes in Na and K status. Klein Bol showed a linear decline in dry matter production with a decrease in available K, whereas for cv. Ruby Queen, growth was stimulated at 1.25 mM K and relatively insensitive to a further decreases of K down to 0.10 mM. Leaf glycinebetaine levels showed no significant response to the changing K treatments. Leaf relative water content and osmotic potential were significantly higher for both cultivars at low‐K treatments. Leaf chlorophyll levels were significantly decreased at low‐K treatments, but leaf photosynthetic rates showed no significant difference. No substantial changes were observed in the total cation concentration of plant tissues despite major shifts in the relative Na and K uptake at various K levels. Sodium accounted for 90% of the total cation uptake at the low K levels, and thus Na was likely replacing K in osmotic functions without negatively affecting the plant water status, or growth. Our results also suggest that cv. Ruby Queen can tolerate a much higher Na tissue concentration than cv. Klein Bol before there is any growth reduction.


Journal of Plant Physiology | 2009

Super-elevated CO2 interferes with stomatal response to ABA and night closure in soybean (Glycine max).

Lanfang H. Levine; Jeffrey T. Richards; Raymond M. Wheeler

Studies have shown stomatal conductance (g(s)) of plants exposed to super-elevated CO2 (>5000micromol mol(-1)) increases in several species, in contrast to a decrease of g(s) caused by moderate CO2 enrichment. We conducted a series of experiments to determine whether super-elevated CO2 alters stomatal development and/or interferes with stomatal closure in soybean (Glycine max). Plants were grown at nominal ambient (400), elevated (1200) and super-elevated (10,000micromol mol(-1)) CO2 in controlled environmental chambers. Stomatal density of the plant leaf was examined by a scanning electron microscope (SEM), while the stomatal response to the application of exogenous abscisic acid (ABA), a phytohormone associated with water stress and stomatal control, was investigated in intact growing plants by measuring the g(s) of abaxial leaf surfaces using a steady-state porometer. Relative to the control (400micromol mol(-1) CO2) plants, daytime stomatal conductance (g(s,day)) of the plants grown under 1200 and 10,000micromol mol(-1) CO2 was reduced by 38% and 15%, respectively. Dark period stomatal conductance (g(s,night)) was unaffected by growing under 1200mumol mol(-1) CO2) but dramatically increased under 10,000micromol mol(-1) CO2. Stomatal density increased by 10% in the leaves of 10,000micromol mol(-1) CO2-grown plants, which in part contributed to the higher g(s,night) values. Elevating [CO2] to 1200micromol mol(-1) enhanced ABA-induced stomatal closure, but further increasing CO2 to 10,000micromol mol(-1) significantly reduced ABA-induced stomatal closure. These results demonstrated that stomatal response to ABA is CO2 dependent. Hence, a stomatal failure to effectively respond to an ABA signal and to close at night under extremely high CO2 may increase plants susceptibility to other abiotic stresses.

Collaboration


Dive into the Lanfang H. Levine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge