Jay H. Kalin
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jay H. Kalin.
Journal of the American Chemical Society | 2010
Kyle V. Butler; Jay H. Kalin; Camille Brochier; Guilio Vistoli; Brett Langley; Alan P. Kozikowski
Structure-based drug design combined with homology modeling techniques were used to develop potent inhibitors of HDAC6 that display superior selectivity for the HDAC6 isozyme compared to other inhibitors. These inhibitors can be assembled in a few synthetic steps, and thus are readily scaled up for in vivo studies. An optimized compound from this series, designated Tubastatin A, was tested in primary cortical neuron cultures in which it was found to induce elevated levels of acetylated alpha-tubulin, but not histone, consistent with its HDAC6 selectivity. Tubastatin A also conferred dose-dependent protection in primary cortical neuron cultures against glutathione depletion-induced oxidative stress. Importantly, when given alone at all concentrations tested, this hydroxamate-containing HDAC6-selective compound displayed no neuronal toxicity, thus, forecasting the potential application of this agent and its analogues to neurodegenerative conditions.
Nucleic Acids Research | 2012
Brian Budke; Hillary L. Logan; Jay H. Kalin; Anna Zelivianskaia; William Cameron McGuire; Luke Miller; Jeremy M. Stark; Alan P. Kozikowski; Douglas K. Bishop; Philip P. Connell
Homologous recombination serves multiple roles in DNA repair that are essential for maintaining genomic stability. We here describe RI-1, a small molecule that inhibits the central recombination protein RAD51. RI-1 specifically reduces gene conversion in human cells while stimulating single strand annealing. RI-1 binds covalently to the surface of RAD51 protein at cysteine 319 that likely destabilizes an interface used by RAD51 monomers to oligomerize into filaments on DNA. Correspondingly, the molecule inhibits the formation of subnuclear RAD51 foci in cells following DNA damage, while leaving replication protein A focus formation unaffected. Finally, it potentiates the lethal effects of a DNA cross-linking drug in human cells. Given that this inhibitory activity is seen in multiple human tumor cell lines, RI-1 holds promise as an oncologic drug. Furthermore, RI-1 represents a unique tool to dissect the network of reaction pathways that contribute to DNA repair in cells.
Journal of Medicinal Chemistry | 2012
Jay H. Kalin; Kyle V. Butler; Tatiana Akimova; Wayne W. Hancock; Alan P. Kozikowski
Second-generation Tubastatin A analogues were synthesized and evaluated for their ability to inhibit selectively histone deacetylase 6 (HDAC6). Substitutions to the carboline cap group were well-tolerated with substitution at the 2-position of both β- and γ-carbolines being optimal for HDAC6 activity and selectivity. Some compounds in this series were determined to have subnanomolar activity at HDAC6 with more than 7000 fold selectivity for HDAC6 versus HDAC1. Selected compounds were then evaluated for their ability to augment the immunosuppressive effect of Foxp3+ regulatory T cells. All compounds tested were found to enhance the ability of regulatory T cells to inhibit the mitotic division of effector T cells both in vitro and in vivo, suggesting that further investigation into the use of these compounds for the treatment of autoimmune disorders is warranted.
Journal of Medicinal Chemistry | 2013
Jay H. Kalin; Joel Bergman
This Perspective provides an in depth look at the numerous disease states in which histone deacetylase 6 (HDAC6) has been implicated. The physiological pathways, protein-protein interactions, and non-histone substrates relating to different pathological conditions are discussed with regard to HDAC6. Furthermore, the compounds and methods used to modulate HDAC6 activity are profiled. The latter half of this Perspective analyzes reported HDAC6 selective inhibitors in terms of structure, potency, and selectivity over the other HDAC isoforms with the intent of providing a comprehensive overview of the molecular tools available. Potential obstacles and future directions of HDAC6 research are also presented.
Journal of Medicinal Chemistry | 2013
Brian Budke; Jay H. Kalin; Michal Pawlowski; Anna Zelivianskaia; Megan Wu; Alan P. Kozikowski; Philip P. Connell
Homologous recombination (HR) is an essential process in cells that provides repair of DNA double-strand breaks and lesions that block DNA replication. RAD51 is an evolutionarily conserved protein that is central to HR. Overexpression of RAD51 protein is common in cancer cells and represents a potential therapeutic target in oncology. We previously described a chemical inhibitor of RAD51, called RI-1 (referred to as compound 1 in this report). The chloromaleimide group of this compound is thought to act as a Michael acceptor and react with the thiol group on C319 of RAD51, using a conjugate addition-elimination mechanism. In order to reduce the likelihood of off-target effects and to improve compound stability in biological systems, we developed an analogue of compound 1 that lacks maleimide-based reactivity but retains RAD51 inhibitory activity. This compound, 1-(3,4-dichlorophenyl)-3-(4-methoxyphenyl)-4-morpholino-1H-pyrrole-2,5-dione, named RI-2 (referred to as compound 7a in this report), appears to bind reversibly to the same site on the RAD51 protein as does compound 1. Like compound 1, compound 7a specifically inhibits HR repair in human cells.
Journal of Immunology | 2014
Fengdong Cheng; Maritza Lienlaf; Hongwei Wang; Patricio Perez-Villarroel; Calvin Lee; Karrune Woan; Jennifer Rock-Klotz; Eva Sahakian; David M. Woods; Javier Pinilla-Ibarz; Jay H. Kalin; Jianguo Tao; Wayne W. Hancock; Alan P. Kozikowski; Edward Seto; Alejandro Villagra; Eduardo M. Sotomayor
APCs are critical in T cell activation and in the induction of T cell tolerance. Epigenetic modifications of specific genes in the APC play a key role in this process, and among them histone deacetylases (HDACs) have emerged as key participants. HDAC6, one of the members of this family of enzymes, has been shown to be involved in regulation of inflammatory and immune responses. In this study, to our knowledge we show for the first time that genetic or pharmacologic disruption of HDAC6 in macrophages and dendritic cells results in diminished production of the immunosuppressive cytokine IL-10 and induction of inflammatory APCs that effectively activate Ag-specific naive T cells and restore the responsiveness of anergic CD4+ T cells. Mechanistically, we have found that HDAC6 forms a previously unknown molecular complex with STAT3, association that was detected in both the cytoplasmic and nuclear compartments of the APC. By using HDAC6 recombinant mutants we identified the domain comprising amino acids 503–840 as being required for HDAC6 interaction with STAT3. Furthermore, by re–chromatin immunoprecipitation we confirmed that HDAC6 and STAT3 are both recruited to the same DNA sequence within the Il10 gene promoter. Of note, disruption of this complex by knocking down HDAC6 resulted in decreased STAT3 phosphorylation—but no changes in STAT3 acetylation—as well as diminished recruitment of STAT3 to the Il10 gene promoter region. The additional demonstration that a selective HDAC6 inhibitor disrupts this STAT3/IL-10 tolerogenic axis points to HDAC6 as a novel molecular target in APCs to overcome immune tolerance and tips the balance toward T cell immunity.
ChemMedChem | 2012
Jay H. Kalin; Han-Kun Zhang; Sophie Gaudrel-Grosay; Giulio Vistoli; Alan P. Kozikowski
Mercaptoacetamide‐based ligands have been designed as a new class of histone deacetylase (HDAC) inhibitors for possible use in the treatment of neurodegenerative diseases. The thiol group of these compounds provides a key binding element for interaction with the catalytic zinc ion, and thus differs from the more typically employed hydroxamic acid based zinc binding groups. Herein we disclose the chemistry and biology of some substituted mercaptoacetamides with the intention of increasing HDAC6 isoform selectivity while maintaining potency similar to their hydroxamic acid analogues. The introduction of a stereocenter α to the thiol group was found to have a considerable impact on HDAC inhibitor potency. These new compounds were also profiled for their therapeutic potential in an in vitro model of stress‐induced neuronal injury and were found to act as nontoxic neuroprotective agents.
Current Opinion in Chemical Biology | 2009
Jay H. Kalin; Kyle V. Butler; Alan P. Kozikowski
The approval of suberoylanilide hydroxamic acid by the FDA for the treatment of cutaneous T-cell lymphoma in October, 2006 sparked a dramatic increase in the development of inhibitors for the class of enzymes known as the histone deacetylases (HDACs). In recent years, a large number of combination therapies involving histone deacetylase inhibitors (HDACIs) have been developed for the treatment of a variety of malignancies and neurodegenerative disorders. Promising evidence has been reported for the treatment of pancreatic cancer, prostate cancer, and leukemia as well as a number of other previously difficult to treat cancers. Drug combination approaches have also shown promise for the treatment of mood disorders including bipolar disorder and depression. In addition to these drug combination approaches, HDACIs alone have demonstrated effectiveness in the treatment of Parkinsons disease, Alzheimers disease, Rubinstein-Taybi syndrome, Rett syndrome, Friedreichs ataxia, Huntingtons disease, multiple sclerosis, anxiety, and schizophrenia. Adverse inflammatory affects observed with traumatic brain injury and arthritis have also been alleviated by treatment with certain HDACIs. Based on the diverse utility and wide range of mechanistic actions observed with this class of drugs, the future development of better drug combination therapies and more selective HDACIs is warranted.
ACS Chemical Neuroscience | 2016
Sida Shen; Veronick Benoy; Joel Bergman; Jay H. Kalin; Mariana Frojuello; Giulio Vistoli; Wanda Haeck; Ludo Van Den Bosch; Alan P. Kozikowski
Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties. By utilizing a bicyclic cap as the structural scaffold from which to build upon, we developed several analogues that showed improved potency compared to tubastatin A while maintaining excellent selectivity compared to HDAC1. Further screening in N2a cells examining both the acetylation of α-tubulin and histones narrowed down the library of compounds to three potent and selective HDAC6 inhibitors. In mutant HSPB1-expressing DRG neurons, serving as an in vitro model for CMT2, these inhibitors were able to restore the mitochondrial axonal transport deficits. Combining structure-based development of HDAC6 inhibitors, screening in N2a cells and in a neuronal model for CMT2F, and preliminary ADMET and pharmacokinetic profiles, resulted in the selection of compound 23d that possesses improved biochemical, functional, and druglike properties compared to tubastatin A.
Journal of Labelled Compounds and Radiopharmaceuticals | 2016
Shuiyu Lu; Yi Zhang; Jay H. Kalin; Lisheng Cai; Alan P. Kozikowski; Victor W. Pike
We aimed to label tubastatin A (1) with carbon-11 (t1/2 = 20.4 min) in the hydroxamic acid site to provide a potential radiotracer for imaging histone deacetylase 6 in vivo with positron emission tomography. Initial attempts at a one-pot Pd-mediated insertion of [(11)C]carbon monoxide between the aryl iodide (2) and hydroxylamine gave low radiochemical yields (<5%) of [(11) C]1. Labeling was achieved in useful radiochemical yields (16.1 ± 5.6%, n = 4) through a two-step process based on Pd-mediated insertion of [(11)C]carbon monoxide between the aryl iodide (2) and p-nitrophenol to give the [(11)C]p-nitrophenyl ester ([(11)C]5), followed by ultrasound-assisted hydroxyaminolysis of the activated ester with excess hydroxylamine in a DMSO/THF mixture in the presence of a strong phosphazene base P1-t-Bu. However, success in labeling the hydroxamic acid group of [(11)C]tubastatin A was not transferable to the labeling of three other model hydroxamic acids.