Kyle V. Butler
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kyle V. Butler.
Journal of the American Chemical Society | 2010
Kyle V. Butler; Jay H. Kalin; Camille Brochier; Guilio Vistoli; Brett Langley; Alan P. Kozikowski
Structure-based drug design combined with homology modeling techniques were used to develop potent inhibitors of HDAC6 that display superior selectivity for the HDAC6 isozyme compared to other inhibitors. These inhibitors can be assembled in a few synthetic steps, and thus are readily scaled up for in vivo studies. An optimized compound from this series, designated Tubastatin A, was tested in primary cortical neuron cultures in which it was found to induce elevated levels of acetylated alpha-tubulin, but not histone, consistent with its HDAC6 selectivity. Tubastatin A also conferred dose-dependent protection in primary cortical neuron cultures against glutathione depletion-induced oxidative stress. Importantly, when given alone at all concentrations tested, this hydroxamate-containing HDAC6-selective compound displayed no neuronal toxicity, thus, forecasting the potential application of this agent and its analogues to neurodegenerative conditions.
Molecular and Cellular Biology | 2011
Edwin F. de Zoeten; Liqing Wang; Kyle V. Butler; Ulf H. Beier; Tatiana Akimova; Hong Sai; James E. Bradner; Ralph Mazitschek; Alan P. Kozikowski; Patrick Matthias; Wayne W. Hancock
ABSTRACT Foxp3+ T-regulatory cells (Tregs) are key to immune homeostasis such that their diminished numbers or function can cause autoimmunity and allograft rejection. Foxp3+ Tregs express multiple histone/protein deacetylases (HDACs) that regulate chromatin remodeling, gene expression, and protein function. Pan-HDAC inhibitors developed for oncologic applications enhance Treg production and Treg suppression function but have limited nononcologic utility given their broad actions and various side effects. We show, using HDAC6-deficient mice and wild-type (WT) mice treated with HDAC6-specific inhibitors, that HDAC6 inhibition promotes Treg suppressive activity in models of inflammation and autoimmunity, including multiple forms of experimental colitis and fully major histocompatibility complex (MHC)-incompatible cardiac allograft rejection. Many of the beneficial effects of HDAC6 targeting are also achieved by inhibition of the HDAC6-regulated protein heat shock protein 90 (HSP90). Hence, selective targeting of a single HDAC isoform, HDAC6, or its downstream target, HSP90, can promote Treg-dependent suppression of autoimmunity and transplant rejection.
Current Pharmaceutical Design | 2008
Kyle V. Butler; Alan P. Kozikowski
Histones undergo extensive posttranslational modifications that affect gene expression. Acetylation is a key histone modification that is primarily regulated by two enzymes, one of which is histone deacetylase (HDAC). The activity of HDAC causes transcriptional silencing of DNA. Eleven distinct zinc-dependent histone deacetylase isoforms have been identified in humans. Each isoform has a unique structure and function, and regulates a unique set of genes. HDAC is responsible for the regulation of many genes involved in cancer cell proliferation, and it has been implicated in the pathogenesis of many neurological conditions. HDAC inhibitors are known to be very effective anti-cancer agents, and research has shown them to be potential treatments for many other conditions. Histone deacetylase inhibitors modify the expression of many genes, and it is possible that inhibition of one isoform could cause epigenetic changes that are beneficial to treatment of a disease, while inhibition of another isoform could cause contradictory changes. Selective HDAC inhibitors will be better able to avoid these types of situations than non-specific inhibitors, and may also be less toxic than pan-HDAC inhibitors. Many potent pan-HDAC inhibitors have already been developed, leaving the development of selective inhibitors at the forefront of HDAC drug development. Certain structural moieties may be added to HDAC inhibitors to give isoform selectivity, and these will be discussed in this review. This review will focus on the applications of selective HDAC inhibitors, inhibitors reported to show selectivity, and the relationship between inhibitor structure and selectivity.
Journal of Medicinal Chemistry | 2012
Jay H. Kalin; Kyle V. Butler; Tatiana Akimova; Wayne W. Hancock; Alan P. Kozikowski
Second-generation Tubastatin A analogues were synthesized and evaluated for their ability to inhibit selectively histone deacetylase 6 (HDAC6). Substitutions to the carboline cap group were well-tolerated with substitution at the 2-position of both β- and γ-carbolines being optimal for HDAC6 activity and selectivity. Some compounds in this series were determined to have subnanomolar activity at HDAC6 with more than 7000 fold selectivity for HDAC6 versus HDAC1. Selected compounds were then evaluated for their ability to augment the immunosuppressive effect of Foxp3+ regulatory T cells. All compounds tested were found to enhance the ability of regulatory T cells to inhibit the mitotic division of effector T cells both in vitro and in vivo, suggesting that further investigation into the use of these compounds for the treatment of autoimmune disorders is warranted.
Journal of Chemical Information and Modeling | 2009
Hao Tang; Xiang S. Wang; Xi Ping Huang; Bryan L. Roth; Kyle V. Butler; Alan P. Kozikowski; Mira Jung; Alexander Tropsha
Inhibitors of histone deacetylases (HDACIs) have emerged as a new class of drugs for the treatment of human cancers and other diseases because of their effects on cell growth, differentiation, and apoptosis. In this study we have developed several quantitative structure-activity relationship (QSAR) models for 59 chemically diverse histone deacetylase class 1 (HDAC1) inhibitors. The variable selection k nearest neighbor (kNN) and support vector machines (SVM) QSAR modeling approaches using both MolconnZ and MOE chemical descriptors generated from two-dimensional rendering of compounds as chemical graphs have been employed. We have relied on a rigorous model development workflow including the division of the data set into training, test, and external sets and extensive internal and external validation. Highly predictive QSAR models were generated with leave-one-out cross-validated (LOO-CV) q2 and external R2 values as high as 0.80 and 0.87, respectively, using the kNN/MolconnZ approach and 0.93 and 0.87, respectively, using the SVM/MolconnZ approach. All validated QSAR models were employed concurrently for virtual screening (VS) of an in-house compound collection including 9.5 million molecules compiled from the ZINC7.0 database, the World Drug Index (WDI) database, the ASINEX Synergy libraries, and other commercial databases. VS resulted in 45 structurally unique consensus hits that were considered novel putative HDAC1 inhibitors. These computational hits had several novel structural features that were not present in the original data set. Four computational hits with novel scaffolds were tested experimentally, and three of them were confirmed active against HDAC1, with IC50 values for the most active compound of 1.00 microM. The fourth compound was later identified to be a selective inhibitor of HDAC6, a Class II HDAC. Moreover, two of the confirmed hits are marketed drugs, which could potentially facilitate their further development as anticancer agents. This study illustrates the power of the combined QSAR-VS method as a general approach for the effective identification of structurally novel bioactive compounds.
ACS Chemical Biology | 2016
Mohammad S. Eram; Yudao Shen; Magdalena M. Szewczyk; Hong Wu; Guillermo Senisterra; Fengling Li; Kyle V. Butler; H. Uemit Kaniskan; Brandon A. Speed; Carlo dela Sena; Aiping Dong; Hong Zeng; Matthieu Schapira; Peter J. Brown; C.H. Arrowsmith; Dalia Barsyte-Lovejoy; Jing Liu; Masoud Vedadi; Jian Jin
Protein arginine methyltransferases (PRMTs) play a crucial role in a variety of biological processes. Overexpression of PRMTs has been implicated in various human diseases including cancer. Consequently, selective small-molecule inhibitors of PRMTs have been pursued by both academia and the pharmaceutical industry as chemical tools for testing biological and therapeutic hypotheses. PRMTs are divided into three categories: type I PRMTs which catalyze mono- and asymmetric dimethylation of arginine residues, type II PRMTs which catalyze mono- and symmetric dimethylation of arginine residues, and type III PRMT which catalyzes only monomethylation of arginine residues. Here, we report the discovery of a potent, selective, and cell-active inhibitor of human type I PRMTs, MS023, and characterization of this inhibitor in a battery of biochemical, biophysical, and cellular assays. MS023 displayed high potency for type I PRMTs including PRMT1, -3, -4, -6, and -8 but was completely inactive against type II and type III PRMTs, protein lysine methyltransferases and DNA methyltransferases. A crystal structure of PRMT6 in complex with MS023 revealed that MS023 binds the substrate binding site. MS023 potently decreased cellular levels of histone arginine asymmetric dimethylation. It also reduced global levels of arginine asymmetric dimethylation and concurrently increased levels of arginine monomethylation and symmetric dimethylation in cells. We also developed MS094, a close analog of MS023, which was inactive in biochemical and cellular assays, as a negative control for chemical biology studies. MS023 and MS094 are useful chemical tools for investigating the role of type I PRMTs in health and disease.
Journal of Medicinal Chemistry | 2014
Anqi Ma; Wenyu Yu; Fengling Li; Rachel M. Bleich; J. Martin Herold; Kyle V. Butler; Jacqueline L. Norris; Victoria K. Korboukh; Ashutosh Tripathy; William P. Janzen; C.H. Arrowsmith; Stephen V. Frye; Masoud Vedadi; Peter J. Brown; Jian Jin
The lysine methyltransferase SETD8 is the only known methyltransferase that catalyzes monomethylation of histone H4 lysine 20 (H4K20). Monomethylation of H4K20 has been implicated in regulating diverse biological processes including the DNA damage response. In addition to H4K20, SETD8 monomethylates non-histone substrates including proliferating cell nuclear antigen (PCNA) and promotes carcinogenesis by deregulating PCNA expression. However, selective inhibitors of SETD8 are scarce. The only known selective inhibitor of SETD8 to date is nahuoic acid A, a marine natural product, which is competitive with the cofactor. Here, we report the discovery of the first substrate-competitive inhibitor of SETD8, UNC0379 (1). This small-molecule inhibitor is active in multiple biochemical assays. Its affinity to SETD8 was confirmed by ITC (isothermal titration calorimetry) and SPR (surface plasmon resonance) studies. Importantly, compound 1 is selective for SETD8 over 15 other methyltransferases. We also describe structure–activity relationships (SAR) of this series.
Current Opinion in Chemical Biology | 2009
Jay H. Kalin; Kyle V. Butler; Alan P. Kozikowski
The approval of suberoylanilide hydroxamic acid by the FDA for the treatment of cutaneous T-cell lymphoma in October, 2006 sparked a dramatic increase in the development of inhibitors for the class of enzymes known as the histone deacetylases (HDACs). In recent years, a large number of combination therapies involving histone deacetylase inhibitors (HDACIs) have been developed for the treatment of a variety of malignancies and neurodegenerative disorders. Promising evidence has been reported for the treatment of pancreatic cancer, prostate cancer, and leukemia as well as a number of other previously difficult to treat cancers. Drug combination approaches have also shown promise for the treatment of mood disorders including bipolar disorder and depression. In addition to these drug combination approaches, HDACIs alone have demonstrated effectiveness in the treatment of Parkinsons disease, Alzheimers disease, Rubinstein-Taybi syndrome, Rett syndrome, Friedreichs ataxia, Huntingtons disease, multiple sclerosis, anxiety, and schizophrenia. Adverse inflammatory affects observed with traumatic brain injury and arthritis have also been alleviated by treatment with certain HDACIs. Based on the diverse utility and wide range of mechanistic actions observed with this class of drugs, the future development of better drug combination therapies and more selective HDACIs is warranted.
MedChemComm | 2014
Anqi Ma; Wenyu Yu; Yan Xiong; Kyle V. Butler; Peter J. Brown; Jian Jin
SETD8 (also known as SET8, PR-SET7, or KMT5A (lysine methyltransferase 5A)) is the only known lysine methyltransferase that catalyzes monomethylation of histone H4 lysine 20 (H4K20). In addition to H4K20, SETD8 monomethylates non-histone substrates such as the tumor suppressor p53 and proliferating cell nuclear antigen (PCNA). Because of its role in regulating diverse biological processes, SETD8 has been pursued as a potential therapeutic target. We recently reported the first substrate-competitive SETD8 inhibitor, UNC0379 (1), which is selective for SETD8 over 15 other methyltransferases. We characterized this inhibitor in a battery of biochemical and biophysical assays. Here we describe our comprehensive structure-activity relationship (SAR) studies of this chemical series. In addition to 2- and 4-substituents, we extensively explored 6- and 7-substituents of the quinazoline scaffold. These SAR studies led to the discovery of several new compounds, which displayed similar potencies as compound 1, and interesting SAR trends.
Nature Chemical Biology | 2017
John D. McCorvy; Kyle V. Butler; Brendan Kelly; Katie Rechsteiner; Joel Karpiak; Robin M. Betz; Bethany L. Kormos; Brian K. Shoichet; Ron O. Dror; Jian Jin; Bryan L. Roth
Development of biased ligands targeting G protein-coupled receptors (GPCRs) is a promising approach for current drug discovery. Although structure-based drug design of biased agonists remains challenging even with an abundance of GPCR crystal structures, we present an approach for translating GPCR structural data into β-arrestin-biased ligands for aminergic GPCRs. We identified specific amino acid-ligand contacts at transmembrane helix 5 (TM5) and extracellular loop 2 (EL2) responsible for Gi/o and β-arrestin signaling, respectively, and targeted those residues to develop biased ligands. For these ligands, we found that bias is conserved at other aminergic GPCRs that retain similar residues at TM5 and EL2. Our approach provides a template for generating arrestin-biased ligands by modifying predicted ligand interactions that block TM5 interactions and promote EL2 interactions. This strategy could facilitate the structure-guided design of arrestin-biased ligands at other GPCRs, including polypharmacological biased ligands.