Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay W. Ponder is active.

Publication


Featured researches published by Jay W. Ponder.


Advances in Protein Chemistry | 2003

Force fields for protein simulations.

Jay W. Ponder; David A. Case

Publisher Summary The chapter focuses on a general description of the force fields that are most commonly used at present, and it gives an indication of the directions of current research that may yield better functions in the near future. After a brief survey of current models, mostly generated during the 1990s, the focus of the chapter is on the general directions the field is taking in developing new models. The most commonly used protein force fields incorporate a relatively simple potential energy function: The emphasis is on the use of continuum methods to model the electrostatic effects of hydration and the introduction of polarizability to model the electronic response to changes in the environment. Some of the history and performance of widely used protein force fields based on an equation on simplest potential energy function or closely related equations are reviewed. The chapter outlines some promising developments that go beyond this, primarily by altering the way electrostatic interactions are treated. The use of atomic multipoles and off-center charge distributions, as well as attempts to incorporate electronic polarizability, are also discussed in the chapter.


Journal of Physical Chemistry B | 2010

Current Status of the AMOEBA Polarizable Force Field

Jay W. Ponder; Chuanjie Wu; Pengyu Ren; Vijay S. Pande; John D. Chodera; Michael J. Schnieders; Imran S. Haque; David L. Mobley; Daniel S. Lambrecht; Robert A. DiStasio; Martin Head-Gordon; Gary N. I. Clark; Margaret E. Johnson; Teresa Head-Gordon

Molecular force fields have been approaching a generational transition over the past several years, moving away from well-established and well-tuned, but intrinsically limited, fixed point charge models toward more intricate and expensive polarizable models that should allow more accurate description of molecular properties. The recently introduced AMOEBA force field is a leading publicly available example of this next generation of theoretical model, but to date, it has only received relatively limited validation, which we address here. We show that the AMOEBA force field is in fact a significant improvement over fixed charge models for small molecule structural and thermodynamic observables in particular, although further fine-tuning is necessary to describe solvation free energies of drug-like small molecules, dynamical properties away from ambient conditions, and possible improvements in aromatic interactions. State of the art electronic structure calculations reveal generally very good agreement with AMOEBA for demanding problems such as relative conformational energies of the alanine tetrapeptide and isomers of water sulfate complexes. AMOEBA is shown to be especially successful on protein-ligand binding and computational X-ray crystallography where polarization and accurate electrostatics are critical.


Journal of Chemical Theory and Computation | 2018

Tinker 8: Software Tools for Molecular Design

Joshua A. Rackers; Zhi Wang; Chao Lu; Marie L. Laury; Louis Lagardère; Michael J. Schnieders; Jean-Philip Piquemal; Pengyu Ren; Jay W. Ponder

The Tinker software, currently released as version 8, is a modular molecular mechanics and dynamics package written primarily in a standard, easily portable dialect of Fortran 95 with OpenMP extensions. It supports a wide variety of force fields, including polarizable models such as the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field. The package runs on Linux, macOS, and Windows systems. In addition to canonical Tinker, there are branches, Tinker-HP and Tinker-OpenMM, designed for use on message passing interface (MPI) parallel distributed memory supercomputers and state-of-the-art graphical processing units (GPUs), respectively. The Tinker suite also includes a tightly integrated Java-based graphical user interface called Force Field Explorer (FFE), which provides molecular visualization capabilities as well as the ability to launch and control Tinker calculations.


Journal of Computational Chemistry | 2002

Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations

Pengyu Ren; Jay W. Ponder

A protocol is described for the treatment of molecular polarization in force field calculations. The resulting model is consistent in that both inter‐ and intramolecular polarization are handled within a single scheme. An analytical formula for removing intramolecular polarization from a set of atomic multipoles for an arbitrary static structure or conformation is given. With the help of the intramolecular polarization, these permanent atomic multipoles can then be applied in modeling alternative conformations of a molecule. Equipped with this simple technique, one can derive transferable electrostatic parameters for peptides and proteins using flexible model compounds such as dipeptides. The proposed procedure is tested for its ability to describe the electrostatic potential around various configurations of the N‐methylacetamide dimer. The effect of different intramolecular polarization schemes on the accuracy of a force field model of the electrostatic potential of alanine dipeptide is investigated. A group‐based scheme for including direct intramolecular polarization is shown to be most successful in accounting for the conformational dependence of electrostatic potentials.


Journal of Computational Chemistry | 1995

Accurate Modeling of the Intramolecular Electrostatic Energy of Proteins

Michael J. Dudek; Jay W. Ponder

The (ϕ, ψ) energy surface of blocked alanine (N‐acetyl–N′‐methyl alanineamide) was calculated at the Hartree‐Fock (HF)/6‐31G* level using ab initio molecular orbital theory. A collection of six electrostatic models was constructed, and the term electrostatic model was used to refer to (1) a set of atomic charge densities, each unable to deform with conformation; and (2) a rule for estimating the electrostatic interaction energy between a pair of atomic charge densities. In addition to two partial charge and three multipole electrostatic models, this collection includes one extremely detailed model, which we refer to as nonspherical CPK. For each of these six electrostatic models, parameters—in the form of partial charges, atomic multipoles, or generalized atomic densities—were calculated from the HF/6‐31G* wave functions whose energies define the ab initio energy surface. This calculation of parameters was complicated by a problem that was found to originate from the locking in of a set of atomic charge densities, each of which contains a small polarization‐induced deformation from its idealized unpolarized state. It was observed that the collective contribution of these small polarization‐induced deformations to electrostatic energy differences between conformations can become large relative to ab initio energy differences between conformations. For each of the six electrostatic models, this contribution was reduced by an averaging of atomic charge densities (or electrostatic energy surfaces) over a large collection of conformations. The ab initio energy surface was used as a target with respect to which relative accuracies were determined for the six electrostatic models. A collection of 42 more complete molecular mechanics models was created by combining each of our six electrostatic models with a collection of seven models of repulsion + dispersion + intrinsic torsional energy, chosen to provide a representative sample of functional forms and parameter sets. A measure of distance was defined between model and ab initio energy surfaces; and distances were calculated for each of our 42 molecular mechanics models. For most of our 12 standard molecular mechanics models, the average error between model and ab initio energy surfaces is greater than 1.5 kcal/mol. This error is decreased by (1) careful treatment of the nonspherical nature of atomic charge densities, and (2) accurate representation of electrostatic interaction energies of types 1—2 and 1—3. This result suggests an electrostatic origin for at least part of the error between standard model and ab initio energy surfaces. Given the range of functional forms that is used by the current generation of protein potential functions, these errors cannot be corrected by compensating for errors in other energy components.


Nature Structural & Molecular Biology | 1999

A potential smoothing algorithm accurately predicts transmembrane helix packing

Rohit V. Pappu; Garland R. Marshall; Jay W. Ponder

Potential smoothing, a deterministic analog of stochastic simulated annealing, is a powerful paradigm for the solution of conformational search problems that require extensive sampling, and should be a useful tool in computational approaches to structure prediction and refinement. A novel potential smoothing and search (PSS) algorithm has been developed and applied to predict the packing of transmembrane helices. The highlight of this method is the efficient manner in which it circumvents the combinatorial explosion associated with the large number of minima on multidimensional potential energy surfaces in order to converge to the global energy minimum. Here we show how our potential smoothing and search method succeeds in finding the global minimum energy structure for the glycophorin A (GpA) transmembrane helix dimer by optimizing interhelical van der Waals interactions over rigid and semi–rigid helices. Structures obtained from our ab initio predictions are in close agreement with recent experimental data.


Journal of Chemical Physics | 2007

Polarizable Atomic Multipole Solutes in a Poisson-Boltzmann Continuum

Michael J. Schnieders; Nathan A. Baker; Pengyu Ren; Jay W. Ponder

Modeling the change in the electrostatics of organic molecules upon moving from vacuum into solvent, due to polarization, has long been an interesting problem. In vacuum, experimental values for the dipole moments and polarizabilities of small, rigid molecules are known to high accuracy; however, it has generally been difficult to determine these quantities for a polar molecule in water. A theoretical approach introduced by Onsager [J. Am. Chem. Soc. 58, 1486 (1936)] used vacuum properties of small molecules, including polarizability, dipole moment, and size, to predict experimentally known permittivities of neat liquids via the Poisson equation. Since this important advance in understanding the condensed phase, a large number of computational methods have been developed to study solutes embedded in a continuum via numerical solutions to the Poisson-Boltzmann equation. Only recently have the classical force fields used for studying biomolecules begun to include explicit polarization in their functional forms. Here the authors describe the theory underlying a newly developed polarizable multipole Poisson-Boltzmann (PMPB) continuum electrostatics model, which builds on the atomic multipole optimized energetics for biomolecular applications (AMOEBA) force field. As an application of the PMPB methodology, results are presented for several small folded proteins studied by molecular dynamics in explicit water as well as embedded in the PMPB continuum. The dipole moment of each protein increased on average by a factor of 1.27 in explicit AMOEBA water and 1.26 in continuum solvent. The essentially identical electrostatic response in both models suggests that PMPB electrostatics offers an efficient alternative to sampling explicit solvent molecules for a variety of interesting applications, including binding energies, conformational analysis, and pK(a) prediction. Introduction of 150 mM salt lowered the electrostatic solvation energy between 2 and 13 kcalmole, depending on the formal charge of the protein, but had only a small influence on dipole moments.


Journal of Computational Chemistry | 1998

Protein structure prediction using a combination of sequence homology and global energy minimization: II. Energy functions

Michael J. Dudek; Kal Ramnarayan; Jay W. Ponder

A protein energy surface is constructed. Validation is through applications of global energy minimization to surface loops of protein crystal structures. For 9 of 10 predictions, the native backbone conformation is identified correctly. Electrostatic energy is modeled as a pairwise sum of interactions between anisotropic atomic charge densities. Model repulsion energy has a softness similar to that seen in ab initio data. Intrinsic torsional energy is modeled as a sum over pairs of adjacent torsion angles of 2‐dimensional Fourier series. Hydrophobic energy is that of a hydration shell model. The remainder of hydration free energy is obtained as the energetic effect of a continuous dielectric medium. Parameters are adjusted to reproduce the following data: a complete set of ab initio energy surfaces, meaning one for each pair of adjacent torsion angles of each blocked amino acid; experimental crystal structures and sublimation energies for nine model compounds; ab initio energies over 1014 conformations of 15 small‐molecule dimers; and experimental hydration free energies for 48 model compounds. All ab initio data is at the Hartree–Fock/6–31G* level. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 548–573, 1998


Journal of Computational Chemistry | 2011

Multipole electrostatics in hydration free energy calculations.

Yue Shi; Chuanjie Wu; Jay W. Ponder; Pengyu Ren

Hydration free energy (HFE) is generally used for evaluating molecular solubility, which is an important property for pharmaceutical and chemical engineering processes. Accurately predicting HFE is also recognized as one fundamental capability of molecular mechanics force field. Here, we present a systematic investigation on HFE calculations with AMOEBA polarizable force field at various parameterization and simulation conditions. The HFEs of seven small organic molecules have been obtained alchemically using the Bennett Acceptance Ratio method. We have compared two approaches to derive the atomic multipoles from quantum mechanical calculations: one directly from the new distributed multipole analysis and the other involving fitting to the electrostatic potential around the molecules. Wave functions solved at the MP2 level with four basis sets (6‐311G*, 6‐311++G(2d,2p), cc‐pVTZ, and aug‐cc‐pVTZ) are used to derive the atomic multipoles. HFEs from all four basis sets show a reasonable agreement with experimental data (root mean square error 0.63 kcal/mol for aug‐cc‐pVTZ). We conclude that aug‐cc‐pVTZ gives the best performance when used with AMOEBA, and 6‐311++G(2d,2p) is comparable but more efficient for larger systems. The results suggest that the inclusion of diffuse basis functions is important for capturing intermolecular interactions. The effect of long‐range correction to van der Waals interaction on the hydration free energies is about 0.1 kcal/mol when the cutoff is 12Å, and increases linearly with the number of atoms in the solute/ligand. In addition, we also discussed the results from a hybrid approach that combines polarizable solute with fixed‐charge water in the HFE calculation.


Journal of Physical Chemistry B | 2015

Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model

Marie L. Laury; Lee-Ping Wang; Vijay S. Pande; Teresa Head-Gordon; Jay W. Ponder

A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.

Collaboration


Dive into the Jay W. Ponder's collaboration.

Top Co-Authors

Avatar

Pengyu Ren

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chuanjie Wu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David P. Cistola

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ellen Li

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garland R. Marshall

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jeff Kao

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joshua A. Rackers

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge