Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay Wells is active.

Publication


Featured researches published by Jay Wells.


Nature | 2014

Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430

Travis K. Warren; Jay Wells; Rekha G. Panchal; Kelly S. Stuthman; Nicole L. Garza; Sean Van Tongeren; Lian Dong; Cary Retterer; Brett Eaton; Gianluca Pegoraro; Shelley P. Honnold; Shanta Bantia; Pravin L. Kotian; Xilin Chen; Brian R. Taubenheim; Lisa S. Welch; Dena M. Minning; Yarlagadda S. Babu; Sina Bavari

Filoviruses are emerging pathogens and causative agents of viral haemorrhagic fever. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, exceeding 90% (ref. 1). Licensed therapeutic or vaccine products are not available to treat filovirus diseases. Candidate therapeutics previously shown to be efficacious in non-human primate disease models are based on virus-specific designs and have limited broad-spectrum antiviral potential. Here we show that BCX4430, a novel synthetic adenosine analogue, inhibits infection of distinct filoviruses in human cells. Biochemical, reporter-based and primer-extension assays indicate that BCX4430 inhibits viral RNA polymerase function, acting as a non-obligate RNA chain terminator. Post-exposure intramuscular administration of BCX4430 protects against Ebola virus and Marburg virus disease in rodent models. Most importantly, BCX4430 completely protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. In addition, BCX4430 exhibits broad-spectrum antiviral activity against numerous viruses, including bunyaviruses, arenaviruses, paramyxoviruses, coronaviruses and flaviviruses. This is the first report, to our knowledge, of non-human primate protection from filovirus disease by a synthetic drug-like small molecule. We provide additional pharmacological characterizations supporting the potential development of BCX4430 as a countermeasure against human filovirus diseases and other viral diseases representing major public health threats.


Nature Medicine | 2010

Advanced antisense therapies for postexposure protection against lethal filovirus infections

Travis K. Warren; Kelly L. Warfield; Jay Wells; Dana L. Swenson; Kelly S Donner; Sean A. van Tongeren; Nicole L. Garza; Lian Dong; Dan V. Mourich; Stacy Crumley; Donald K. Nichols; Patrick L. Iversen; Sina Bavari

Currently, no vaccines or therapeutics are licensed to counter Ebola or Marburg viruses, highly pathogenic filoviruses that are causative agents of viral hemorrhagic fever. Here we show that administration of positively charged phosphorodiamidate morpholino oligomers (PMOplus), delivered by various dosing strategies initiated 30–60 min after infection, protects >60% of rhesus monkeys against lethal Zaire Ebola virus (ZEBOV) and 100% of cynomolgus monkeys against Lake Victoria Marburg virus (MARV) infection. PMOplus may be useful for treating these and other highly pathogenic viruses in humans.


PLOS ONE | 2013

A Systematic Screen of FDA-Approved Drugs for Inhibitors of Biological Threat Agents

Peter B. Madrid; Sidharth Chopra; Ian D. Manger; Lynne Gilfillan; Tiffany R. Keepers; Amy C. Shurtleff; Carol E. Green; Lalitha V. Iyer; Holli Hutcheson Dilks; Robert A. Davey; Andrey A. Kolokoltsov; Ricardo Carrion; Jean L. Patterson; Sina Bavari; Rekha G. Panchal; Travis K. Warren; Jay Wells; Walter H. Moos; RaeLyn L. Burke; Mary J. Tanga

Background The rapid development of effective medical countermeasures against potential biological threat agents is vital. Repurposing existing drugs that may have unanticipated activities as potential countermeasures is one way to meet this important goal, since currently approved drugs already have well-established safety and pharmacokinetic profiles in patients, as well as manufacturing and distribution networks. Therefore, approved drugs could rapidly be made available for a new indication in an emergency. Methodology/Principal Findings A large systematic effort to determine whether existing drugs can be used against high containment bacterial and viral pathogens is described. We assembled and screened 1012 FDA-approved drugs for off-label broad-spectrum efficacy against Bacillus anthracis; Francisella tularensis; Coxiella burnetii; and Ebola, Marburg, and Lassa fever viruses using in vitro cell culture assays. We found a variety of hits against two or more of these biological threat pathogens, which were validated in secondary assays. As expected, antibiotic compounds were highly active against bacterial agents, but we did not identify any non-antibiotic compounds with broad-spectrum antibacterial activity. Lomefloxacin and erythromycin were found to be the most potent compounds in vivo protecting mice against Bacillus anthracis challenge. While multiple virus-specific inhibitors were identified, the most noteworthy antiviral compound identified was chloroquine, which disrupted entry and replication of two or more viruses in vitro and protected mice against Ebola virus challenge in vivo. Conclusions/Significance The feasibility of repurposing existing drugs to face novel threats is demonstrated and this represents the first effort to apply this approach to high containment bacteria and viruses.


Journal of Virology | 2009

Development and Characterization of a Mouse Model for Marburg Hemorrhagic Fever

Kelly L. Warfield; Steven B. Bradfute; Jay Wells; Loreen L. Lofts; Meagan T. Cooper; D. A. Alves; Daniel K. Reed; Sean VanTongeren; Christine A. Mech; Sina Bavari

ABSTRACT The lack of a mouse model has hampered an understanding of the pathogenesis and immunity of Marburg hemorrhagic fever (MHF), the disease caused by marburgvirus (MARV), and has created a bottleneck in the development of antiviral therapeutics. Primary isolates of the filoviruses, i.e., ebolavirus (EBOV) and MARV, are not lethal to immunocompetent adult mice. Previously, pathological, virologic, and immunologic evaluation of a mouse-adapted EBOV, developed by sequential passages in suckling mice, identified many similarities between this model and EBOV infections in nonhuman primates. We recently demonstrated that serially passaging virus recovered from the liver homogenates of MARV-infected immunodeficient (SCID) mice was highly successful in reducing the time to death in these mice from 50 to 70 days to 7 to 10 days after challenge with the isolate MARV-Ci67, -Musoke, or -Ravn. In this study, we extended our findings to show that further sequential passages of MARV-Ravn in immunocompetent mice caused the MARV to kill BALB/c mice. Serial sampling studies to characterize the pathology of mouse-adapted MARV-Ravn revealed that this model is similar to the guinea pig and nonhuman primate MHF models. Infection of BALB/c mice with mouse-adapted MARV-Ravn caused uncontrolled viremia and high viral titers in the liver, spleen, lymph node, and other organs; profound lymphopenia; destruction of lymphocytes within the spleen and lymph nodes; and marked liver damage and thrombocytopenia. Sequencing the mouse-adapted MARV-Ravn strain revealed differences in 16 predicted amino acids from the progenitor virus, although the exact changes required for adaptation are unclear at this time. This mouse-adapted MARV strain can now be used to develop and evaluate novel vaccines and therapeutics and may also help to provide a better understanding of the virulence factors associated with MARV.


Viruses | 2012

Discovery and Early Development of AVI-7537 and AVI-7288 for the Treatment of Ebola Virus and Marburg Virus Infections

Patrick L. Iversen; Travis K. Warren; Jay Wells; Nicole L. Garza; Lisa S. Welch; Rekha G. Panchal; Sina Bavari

There are no currently approved treatments for filovirus infections. In this study we report the discovery process which led to the development of antisense Phosphorodiamidate Morpholino Oligomers (PMOs) AVI-6002 (composed of AVI-7357 and AVI-7539) and AVI-6003 (composed of AVI-7287 and AVI-7288) targeting Ebola virus and Marburg virus respectively. The discovery process involved identification of optimal transcript binding sites for PMO based RNA-therapeutics followed by screening for effective viral gene target in mouse and guinea pig models utilizing adapted viral isolates. An evolution of chemical modifications were tested, beginning with simple Phosphorodiamidate Morpholino Oligomers (PMO) transitioning to cell penetrating peptide conjugated PMOs (PPMO) and ending with PMOplus containing a limited number of positively charged linkages in the PMO structure. The initial lead compounds were combinations of two agents targeting separate genes. In the final analysis, a single agent for treatment of each virus was selected, AVI-7537 targeting the VP24 gene of Ebola virus and AVI-7288 targeting NP of Marburg virus, and are now progressing into late stage clinical development as the optimal therapeutic candidates.


Antiviral Research | 2012

Identification of an antioxidant small-molecule with broad-spectrum antiviral activity.

Rekha G. Panchal; St. Patrick Reid; Julie P. Tran; Alison A. Bergeron; Jay Wells; Krishna P. Kota; Javad Aman; Sina Bavari

The highly lethal filoviruses, Ebola and Marburg cause severe hemorrhagic fever in humans and non-human primates. To date there are no licensed vaccines or therapeutics to counter these infections. Identifying novel pathways and host targets that play an essential role during infection will provide potential targets to develop therapeutics. Small molecule chemical screening for Ebola virus inhibitors resulted in identification of a compound NSC 62914. The compound was found to exhibit anti-filovirus activity in cell-based assays and in vivo protected mice following challenge with Ebola or Marburg viruses. Additionally, the compound was found to inhibit Rift Valley fever virus, Lassa virus and Venezuelan equine encephalitis virus in cell-based assays. Investigation of the mechanism of action of the compound revealed that it had antioxidant properties. Specifically, compound NSC 62914 was found to act as a scavenger of reactive oxygen species, and to up-regulate oxidative stress-induced genes. However, four known antioxidant compounds failed to inhibit filovirus infection, thus suggesting that the mechanistic basis of the antiviral function of the antioxidant NSC 62914 may involve modulation of multiple signaling pathways/targets.


Antimicrobial Agents and Chemotherapy | 2010

Antiviral Activity of a Small-Molecule Inhibitor of Filovirus Infection

Travis K. Warren; Kelly L. Warfield; Jay Wells; Sven Enterlein; Mark A. Smith; Gordon Ruthel; Abdul Yunus; Michael Kinch; Michael Goldblatt; Mohammad Javad Aman; Sina Bavari

ABSTRACT There exists an urgent need to develop licensed drugs and vaccines for the treatment or prevention of filovirus infections. FGI-103 is a low-molecular-weight compound that was discovered through an invitro screening assay utilizing a variant of Zaireebolavirus (ZEBOV) that expresses green fluorescent protein. Invitro analyses demonstrated that FGI-103 also exhibits antiviral activity against wild-type ZEBOV and Sudanebolavirus, as well as Marburgvirus (MARV) strains Ci67 and Ravn. Invivo administration of FGI-103 as a single intraperitoneal dose of 10 mg/kg delivered 24 h after infection is sufficient to completely protect mice against a lethal challenge with a mouse-adapted strain of either ZEBOV or MARV-Ravn. In a murine model of ZEBOV infection, delivery of FGI-103 reduces viremia and the viral burden in kidney, liver, and spleen tissues and is associated with subdued and delayed proinflammatory cytokine responses and tissue pathology. Taken together, these results identify a promising antiviral therapeutic candidate for the treatment of filovirus infections.


Mbio | 2015

A Single Phosphorodiamidate Morpholino Oligomer Targeting VP24 Protects Rhesus Monkeys against Lethal Ebola Virus Infection

Travis K. Warren; Chris A. Whitehouse; Jay Wells; Lisa C. Welch; Alison E. Heald; Jay S. Charleston; Pete Sazani; St. Patrick Reid; Patrick L. Iversen; Sina Bavari

ABSTRACT Ebola viruses (EBOV) cause severe disease in humans and nonhuman primates with high mortality rates and continue to emerge in new geographic locations, including several countries in West Africa, the site of a large ongoing outbreak. Phosphorodiamidate morpholino oligomers (PMOs) are synthetic antisense molecules that are able to target mRNAs in a sequence-specific fashion and suppress translation through steric hindrance. We previously showed that the use of PMOs targeting a combination of VP35 and VP24 protected rhesus monkeys from lethal EBOV infection. Surprisingly, the present study revealed that a PMOplus compound targeting VP24 alone was sufficient to confer protection from lethal EBOV infection but that a PMOplus targeting VP35 alone resulted in no protection. This study further substantiates recent data demonstrating that VP24 may be a key virulence factor encoded by EBOV and suggests that VP24 is a promising target for the development of effective anti-EBOV countermeasures. IMPORTANCE Several West African countries are currently being ravaged by an outbreak of Ebola virus (EBOV) that has become a major epidemic affecting not only these African countries but also Europe and the United States. A better understanding of the mechanism of virulence of EBOV is important for the development of effective treatments, as no licensed treatments or vaccines for EBOV disease are currently available. This study of phosphorodiamidate morpholino oligomers (PMOs) targeting the mRNAs of two different EBOV proteins, alone and in combination, demonstrated that targeting a single protein was effective at conferring a significant survival benefit in an EBOV lethal primate model. Future development of PMOs with efficacy against EBOV will be simplified if only one PMO is required instead of a combination, particularly in terms of regulatory approval. Several West African countries are currently being ravaged by an outbreak of Ebola virus (EBOV) that has become a major epidemic affecting not only these African countries but also Europe and the United States. A better understanding of the mechanism of virulence of EBOV is important for the development of effective treatments, as no licensed treatments or vaccines for EBOV disease are currently available. This study of phosphorodiamidate morpholino oligomers (PMOs) targeting the mRNAs of two different EBOV proteins, alone and in combination, demonstrated that targeting a single protein was effective at conferring a significant survival benefit in an EBOV lethal primate model. Future development of PMOs with efficacy against EBOV will be simplified if only one PMO is required instead of a combination, particularly in terms of regulatory approval.


PLOS ONE | 2014

Toll-Like Receptor Agonist Augments Virus-Like Particle-Mediated Protection from Ebola Virus with Transient Immune Activation

Karen A. O. Martins; Jesse T. Steffens; Sean A. van Tongeren; Jay Wells; Alison A. Bergeron; Samuel P. Dickson; John M. Dye; Andres M. Salazar; Sina Bavari

Identifying safe and effective adjuvants is critical for the advanced development of protein-based vaccines. Pattern recognition receptor (PRR) agonists are increasingly being explored as potential adjuvants, but there is concern that the efficacy of these molecules may be dependent on potentially dangerous levels of non-specific immune activation. The filovirus virus-like particle (VLP) vaccine protects mice, guinea pigs, and nonhuman primates from viral challenge. In this study, we explored the impact of a stabilized dsRNA mimic, polyICLC, on VLP vaccination of C57BL/6 mice and Hartley guinea pigs. We show that at dose levels as low as 100 ng, the adjuvant increased the efficacy of the vaccine in mice. Antigen-specific, polyfunctional CD4 and CD8 T cell responses and antibody responses increased significantly upon inclusion of adjuvant. To determine whether the efficacy of polyICLC correlated with systemic immune activation, we examined serum cytokine levels and cellular activation in the draining lymph node. PolyICLC administration was associated with increases in TNFα, IL6, MCP1, MIP1α, KC, and MIP1β levels in the periphery and with the activation of dendritic cells (DCs), NK cells, and B cells. However, this activation resolved within 24 to 72 hours at efficacious adjuvant dose levels. These studies are the first to examine the polyICLC-induced enhancement of antigen-specific immune responses in the context of non-specific immune activation, and they provide a framework from which to consider adjuvant dose levels.


PLOS ONE | 2015

Homologous and Heterologous Protection of Nonhuman Primates by Ebola and Sudan Virus-Like Particles

Kelly L. Warfield; John M. Dye; Jay Wells; Robert Unfer; Frederick W. Holtsberg; Sergey Shulenin; Hong Vu; Dana L. Swenson; Sina Bavari; M. Javad Aman

Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs) have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV) and Marburg virus (MARV) following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV) following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system) and then demonstrate protection against Sudan virus (SUDV) and Taï Forest virus (TAFV). Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components.

Collaboration


Dive into the Jay Wells's collaboration.

Top Co-Authors

Avatar

Sina Bavari

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Travis K. Warren

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Kelly L. Warfield

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rekha G. Panchal

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Dana L. Swenson

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

John M. Dye

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Donald K. Nichols

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Ginger Donnelly

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge