Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald K. Nichols is active.

Publication


Featured researches published by Donald K. Nichols.


Nature Medicine | 2010

Advanced antisense therapies for postexposure protection against lethal filovirus infections

Travis K. Warren; Kelly L. Warfield; Jay Wells; Dana L. Swenson; Kelly S Donner; Sean A. van Tongeren; Nicole L. Garza; Lian Dong; Dan V. Mourich; Stacy Crumley; Donald K. Nichols; Patrick L. Iversen; Sina Bavari

Currently, no vaccines or therapeutics are licensed to counter Ebola or Marburg viruses, highly pathogenic filoviruses that are causative agents of viral hemorrhagic fever. Here we show that administration of positively charged phosphorodiamidate morpholino oligomers (PMOplus), delivered by various dosing strategies initiated 30–60 min after infection, protects >60% of rhesus monkeys against lethal Zaire Ebola virus (ZEBOV) and 100% of cynomolgus monkeys against Lake Victoria Marburg virus (MARV) infection. PMOplus may be useful for treating these and other highly pathogenic viruses in humans.


PLOS Pathogens | 2006

Gene-Specific Countermeasures against Ebola Virus Based on Antisense Phosphorodiamidate Morpholino Oligomers

Kelly L. Warfield; Dana L. Swenson; Gene G. Olinger; Donald K. Nichols; William D. Pratt; Robert E. Blouch; David A. Stein; M. Javad Aman; Patrick L. Iversen; Sina Bavari

The filoviruses Marburg virus and Ebola virus (EBOV) quickly outpace host immune responses and cause hemorrhagic fever, resulting in case fatality rates as high as 90% in humans and nearly 100% in nonhuman primates. The development of an effective therapeutic for EBOV is a daunting public health challenge and is hampered by a paucity of knowledge regarding filovirus pathogenesis. This report describes a successful strategy for interfering with EBOV infection using antisense phosphorodiamidate morpholino oligomers (PMOs). A combination of EBOV-specific PMOs targeting sequences of viral mRNAs for the viral proteins (VPs) VP24, VP35, and RNA polymerase L protected rodents in both pre- and post-exposure therapeutic regimens. In a prophylactic proof-of-principal trial, the PMOs also protected 75% of rhesus macaques from lethal EBOV infection. The work described here may contribute to development of designer, “druggable” countermeasures for filoviruses and other microbial pathogens.


Clinical and Vaccine Immunology | 2010

Protection of Nonhuman Primates against Two Species of Ebola Virus Infection with a Single Complex Adenovirus Vector

William D. Pratt; Danher Wang; Donald K. Nichols; Min Luo; Jan Woraratanadharm; John M. Dye; David H. Holman; John Y. Dong

ABSTRACT Ebola viruses are highly pathogenic viruses that cause outbreaks of hemorrhagic fever in humans and other primates. To meet the need for a vaccine against the several types of Ebola viruses that cause human diseases, we developed a multivalent vaccine candidate (EBO7) that expresses the glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus-based vector (CAdVax). We evaluated our vaccine in nonhuman primates against the parenteral and aerosol routes of lethal challenge. EBO7 vaccine provided protection against both Ebola viruses by either route of infection. Significantly, protection against SEBOV given as an aerosol challenge, which has not previously been shown, could be achieved with a boosting vaccination. These results demonstrate the feasibility of creating a robust, multivalent Ebola virus vaccine that would be effective in the event of a natural virus outbreak or biological threat.


Journal of Virology | 2013

Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Protects Nonhuman Primates from Intramuscular and Aerosol Challenge with Ebolavirus

Andrew S. Herbert; Ana I. Kuehne; James F. Barth; Ramon A. Ortiz; Donald K. Nichols; Samantha E. Zak; Spencer W. Stonier; Majidat Muhammad; Russell R. Bakken; Laura I. Prugar; Gene G. Olinger; Jennifer L. Groebner; John S. Lee; William D. Pratt; Max Custer; Kurt I. Kamrud; Jonathan F. Smith; Mary Kate Hart; John M. Dye

ABSTRACT There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.


Microbes and Infection | 2011

Aerosol exposure to Zaire ebolavirus in three nonhuman primate species: differences in disease course and clinical pathology

Douglas S. Reed; Matthew G. Lackemeyer; Nicole L. Garza; Lawrence J. Sullivan; Donald K. Nichols

There is little known concerning the disease caused by Zaire ebolavirus (ZEBOV) when inhaled, the likely route of exposure in a biological attack. Cynomolgus macaques, rhesus macaques, and African green monkeys were exposed to aerosolized ZEBOV to determine which species might be the most relevant model of the human disease. A petechial rash was noted on cynomolgus and rhesus macaques after fever onset but not on African green monkeys. Fever duration was shortest in rhesus macaques (62.7 ± 16.3 h) and longest in cynomolgus macaques (82.7 ± 22.3h) and African green monkeys (88.4 ± 16.7h). Virus was first detectable in the blood 3 days after challenge; the level of viremia was comparable among all three species. Hematological changes were noted in all three species, including decreases in lymphocyte and platelet counts. Increased blood coagulation times were most pronounced in African green monkeys. Clinical signs and time to death in all three species were comparable to what has been reported previously for each species after parenteral inoculation with ZEBOV. These data will be useful in selection of an animal model for efficacy studies.


Antiviral Research | 2008

Evaluation of orally delivered ST-246 as postexposure prophylactic and antiviral therapeutic in an aerosolized rabbitpox rabbit model

Aysegul Nalca; Josh M. Hatkin; Nicole L. Garza; Donald K. Nichols; Sarah W. Norris; Dennis E. Hruby; Robert Jordan

Orthopoxviruses, such as variola and monkeypox viruses, can cause severe disease in humans when delivered by the aerosol route, and thus represent significant threats to both military and civilian populations. Currently, there are no antiviral therapies approved by the U.S. Food and Drug Administration (FDA) to treat smallpox or monkeypox infection. In this study, we showed that administration of the antiviral compound ST-246 to rabbits by oral gavage, once daily for 14 days beginning 1h postexposure (p.e.), resulted in 100% survival in a lethal aerosolized rabbitpox model used as a surrogate for smallpox. Furthermore, efficacy of delayed treatment with ST-246 was evaluated by beginning treatment on days 1, 2, 3, and 4 p.e. Although a limited number of rabbits showed less severe signs of the rabbitpox disease from the day 1 and day 2 p.e. treatment groups, their illness resolved very quickly, and the survival rates for these group of rabbits were 88% and 100%, respectively. But when the treatment was started on days 3 or 4 p.e., survival was 67% and 33%, respectively. This work suggests that ST-246 is a very potent antiviral compound against aerosolized rabbitpox in rabbits and should be investigated for further development for all orthopoxvirus diseases.


Vaccine | 2009

Evaluation of the efficacy of modified vaccinia Ankara (MVA)/IMVAMUNE® against aerosolized rabbitpox virus in a rabbit model

Nicole L. Garza; Josh M. Hatkin; Virginia Livingston; Donald K. Nichols; Paul Chaplin; Ariane Volkmann; Diana Fisher; Aysegul Nalca

Infection of rabbits with aerosolized rabbitpox virus (RPXV) produces a disease similar to monkeypox and smallpox in humans and provides a valuable, informative model system to test medical countermeasures against orthopoxviruses. Due to the eradication of smallpox, the evaluation of the efficacy of new-generation smallpox vaccines depends on relevant well-developed animal studies for vaccine licensure. In this study, we tested the efficacy of IMVAMUNE [modified vaccinia Ankara-Bavarian Nordic (MVA-BN)] for protecting rabbits against aerosolized RPXV. Rabbits were vaccinated with either phosphate-buffered saline (PBS), Dryvax, a single low dose of IMVAMUNE, a single high dose of IMVAMUNE, or twice with a high dose of IMVAMUNE. Aerosol challenge with a lethal dose of RPXV was performed 4 weeks after the last vaccination. All PBS control animals succumbed to the disease or were euthanized because of the disease within 7 days postexposure. The rabbits vaccinated with Dryvax, a low dose of IMVAMUNE, or a single high dose of IMVAMUNE showed minimal to moderate clinical signs of the disease, but all survived the challenge. The only clinical sign displayed by rabbits that had been vaccinated twice with a high dose of IMVAMUNE was mild transient anorexia in just two out of eight rabbits. This study shows that IMVAMUNE can be a very effective vaccine against aerosolized RPXV.


Viruses | 2012

Development of a Murine Model for Aerosolized Ebolavirus Infection Using a Panel of Recombinant Inbred Mice

Elizabeth E. Zumbrun; Nourtan F. Abdeltawab; Holly A. Bloomfield; Taylor B. Chance; Donald K. Nichols; Paige E. Harrison; Malak Kotb; Aysegul Nalca

Countering aerosolized filovirus infection is a major priority of biodefense research. Aerosol models of filovirus infection have been developed in knock-out mice, guinea pigs and non-human primates; however, filovirus infection of immunocompetent mice by the aerosol route has not been reported. A murine model of aerosolized filovirus infection in mice should be useful for screening vaccine candidates and therapies. In this study, various strains of wild-type and immunocompromised mice were exposed to aerosolized wild-type (WT) or mouse-adapted (MA) Ebola virus (EBOV). Upon exposure to aerosolized WT-EBOV, BALB/c, C57BL/6 (B6), and DBA/2 (D2) mice were unaffected, but 100% of severe combined immunodeficiency (SCID) and 90% of signal transducers and activators of transcription (Stat1) knock-out (KO) mice became moribund between 7–9 days post-exposure (dpe). Exposure to MA-EBOV caused 15% body weight loss in BALB/c, but all mice recovered. In contrast, 10–30% lethality was observed in B6 and D2 mice exposed to aerosolized MA-EBOV, and 100% of SCID, Stat1 KO, interferon (IFN)-γ KO and Perforin KO mice became moribund between 7–14 dpe. In order to identify wild-type, inbred, mouse strains in which exposure to aerosolized MA-EBOV is uniformly lethal, 60 BXD (C57BL/6 crossed with DBA/2) recombinant inbred (RI) and advanced RI (ARI) mouse strains were exposed to aerosolized MA-EBOV, and monitored for disease severity. A complete spectrum of disease severity was observed. All BXD strains lost weight but many recovered. However, infection was uniformly lethal within 7 to 12 days post-exposure in five BXD strains. Aerosol exposure of these five BXD strains to 10-fold less MA-EBOV resulted in lethality ranging from 0% in two strains to 90–100% lethality in two strains. Analysis of post-mortem tissue from BXD strains that became moribund and were euthanized at the lower dose of MA-EBOV, showed liver damage in all mice as well as lung lesions in two of the three strains. The two BXD strains that exhibited 90–100% mortality, even at a low dose of airborne MA-EBOV will be useful mouse models for testing vaccines and therapies. Additionally, since disease susceptibility is affected by complex genetic traits, a systems genetics approach was used to identify preliminary gene loci modulating disease severity among the panel BXD strains. Preliminary quantitative trait loci (QTLs) were identified that are likely to harbor genes involved in modulating differential susceptibility to Ebola infection.


Viruses | 2012

A Characterization of Aerosolized Sudan Virus Infection in African Green Monkeys, Cynomolgus Macaques, and Rhesus Macaques

Elizabeth E. Zumbrun; Holly A. Bloomfield; John M. Dye; Ty C. Hunter; Paul Dabisch; Nicole L. Garza; Nicholas R. Bramel; Reese J. Baker; Roger D. Williams; Donald K. Nichols; Aysegul Nalca

Filoviruses are members of the genera Ebolavirus, Marburgvirus, and “Cuevavirus”. Because they cause human disease with high lethality and could potentially be used as a bioweapon, these viruses are classified as CDC Category A Bioterrorism Agents. Filoviruses are relatively stable in aerosols, retain virulence after lyophilization, and can be present on contaminated surfaces for extended periods of time. This study explores the characteristics of aerosolized Sudan virus (SUDV) Boniface in non-human primates (NHP) belonging to three different species. Groups of cynomolgus macaques (cyno), rhesus macaques (rhesus), and African green monkeys (AGM) were challenged with target doses of 50 or 500 plaque-forming units (pfu) of aerosolized SUDV. Exposure to either viral dose resulted in increased body temperatures in all three NHP species beginning on days 4–5 post-exposure. Other clinical findings for all three NHP species included leukocytosis, thrombocytopenia, anorexia, dehydration, and lymphadenopathy. Disease in all of the NHPs was severe beginning on day 6 post-exposure, and all animals except one surviving rhesus macaque were euthanized by day 14. Serum alanine transaminase (ALT) and aspartate transaminase (AST) concentrations were elevated during the course of disease in all three species; however, AGMs had significantly higher ALT and AST concentrations than cynos and rhesus. While all three species had detectable viral load by days 3-4 post exposure, Rhesus had lower average peak viral load than cynos or AGMs. Overall, the results indicate that the disease course after exposure to aerosolized SUDV is similar for all three species of NHP.


Journal of General Virology | 2011

Rabbitpox: a model of airborne transmission of smallpox.

Aysegul Nalca; Donald K. Nichols

Smallpox is a human disease caused by infection with variola virus, a member of the genus Orthopoxvirus. Although smallpox has been eradicated, concern that it might be reintroduced through bioterrorism has therefore led to intensive efforts to develop new vaccines and antiviral drugs against this disease. Because these vaccines and therapeutics cannot be tested in human trials, it is necessary to test such medical countermeasures in different animal models. Although several orthopoxviruses cause disease in laboratory animals, only rabbitpox virus (RPXV) infection of rabbits shows patterns of natural airborne transmission similar to smallpox. Studies have shown that a smallpox-like disease can be produced in rabbits in a controlled fashion through exposure to a small-particle RPXV aerosol, and rabbitpox spreads from animal to animal by the airborne route in a laboratory setting. This model can therefore be utilized to test drugs and vaccines against variola virus and other aerosolized orthopoxviruses.

Collaboration


Dive into the Donald K. Nichols's collaboration.

Top Co-Authors

Avatar

Aysegul Nalca

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

John M. Dye

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Sina Bavari

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Jay Wells

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Kelly L. Warfield

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Nicole L. Garza

United States Department of the Army

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Travis K. Warren

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

William D. Pratt

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Dana L. Swenson

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge