Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jayachandran Venkatesan is active.

Publication


Featured researches published by Jayachandran Venkatesan.


Marine Drugs | 2010

Chitosan Composites for Bone Tissue Engineering—An Overview

Jayachandran Venkatesan; Se-Kwon Kim

Bone contains considerable amounts of minerals and proteins. Hydroxyapatite [Ca10(PO4)6(OH)2] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%), along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In recent years, significant progress has been made in organ transplantation, surgical reconstruction and the use of artificial protheses to treat the loss or failure of an organ or bone tissue. Chitosan has played a major role in bone tissue engineering over the last two decades, being a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton. In recent years, considerable attention has been given to chitosan composite materials and their applications in the field of bone tissue engineering due to its minimal foreign body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth and osteoconduction. The composite of chitosan including hydroxyapatite is very popular because of the biodegradability and biocompatibility in nature. Recently, grafted chitosan natural polymer with carbon nanotubes has been incorporated to increase the mechanical strength of these composites. Chitosan composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. Herein, the preparation, mechanical properties, chemical interactions and in vitro activity of chitosan composites for bone tissue engineering will be discussed.


International Journal of Biological Macromolecules | 2015

Alginate composites for bone tissue engineering: A review

Jayachandran Venkatesan; Ira Bhatnagar; Panchanathan Manivasagan; Kyong-Hwa Kang; Se-Kwon Kim

Bone is a complex and hierarchical tissue consisting of nano hydroxyapatite and collagen as major portion. Several attempts have been made to prepare the artificial bone so as to replace the autograft and allograft treatment. Tissue engineering is a promising approach to solve the several issues and is also useful in the construction of artificial bone with materials including polymer, ceramics, metals, cells and growth factors. Composites consisting of polymer-ceramics, best mimic the natural functions of bone. Alginate, an anionic polymer owing enormous biomedical applications, is gaining importance particularly in bone tissue engineering due to its biocompatibility and gel forming properties. Several composites such as alginate-polymer (PLGA, PEG and chitosan), alginate-protein (collagen and gelatin), alginate-ceramic, alginate-bioglass, alginate-biosilica, alginate-bone morphogenetic protein-2 and RGD peptides composite have been investigated till date. These alginate composites show enhanced biochemical significance in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, alkaline phosphatase increase, excellent mineralization and osteogenic differentiation. Hence, alginate based composite biomaterials will be promising for bone tissue regeneration. This review will provide a broad overview of alginate preparation and its applications towards bone tissue engineering.


Microbiological Research | 2014

Pharmaceutically active secondary metabolites of marine actinobacteria.

Panchanathan Manivasagan; Jayachandran Venkatesan; Kannan Sivakumar; Se-Kwon Kim

Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.


International Journal of Biological Macromolecules | 2013

Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer.

Kalimuthu Senthilkumar; Panchanathan Manivasagan; Jayachandran Venkatesan; Se-Kwon Kim

Seaweeds, being abundant sources of bioactive components have much interest in recent times. The complex polysaccharides from the brown, red and green seaweeds possess broad spectrum therapeutic properties. The sulfated polysaccharides are routinely used in biomedical research and have known biological activities. Fucoidan, a fucose-rich polysaccharide extracted from brown seaweed has various biological functions including anticancer effects. Cellular damage induces growth arrest and tumor suppression by inducing apoptosis, the mechanism of cell death depends on the magnitude of DNA damage following exposure to anticancer agents. Apoptosis is mainly regulated by cell growth signaling molecules. Number of research studies evidenced that fucoidan shown to induce cytotoxicity of various cancer cells, induces apoptosis, and inhibits invasion, metastasis and angiogenesis of cancer cells. There are few articles discussing on fucoidan biological activity but no specific review on cancer and its signaling mechanism. Hence, this review discusses the brown seaweed fucoidan structure and some biological function and role in apoptosis, invasion, metastasis, angiogenesis and growth signal mechanism on cancer.


Microbiological Research | 2013

RETRACTED: Marine actinobacterial metabolites: Current status and future perspectives

Panchanathan Manivasagan; Jayachandran Venkatesan; Kannan Sivakumar; Se-Kwon Kim

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor. Authors and Editor agreed to retract this article because substantial parts of the text were copied from the following sources without proper attribution: Lam, K.S. (2006), Discovery of novel metabolites from marine actinomycetes. Current Opinion in Microbiology 9(3), pp. 245–251; Subramani, R., Aalbersberg, W. (2012), Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiological Research 167(10), pp. 571–580; Dharmaraj, S. (2010), Marine Streptomyces as a novel source of bioactive substances. World Journal of Microbiology and Biotechnology 26(12), pp. 2123–2139. The authors apologize for this oversight and any inconvenience caused.


International Journal of Biological Macromolecules | 2012

Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering.

Jayachandran Venkatesan; BoMi Ryu; P.N. Sudha; Se-Kwon Kim

In recent years, significant development has been given to chitosan for orthopedic application. In this study, we have prepared scaffolds with the use of low and high molecular weight chitosan with 0.0025%, 0.005% and 0.01% weight of f-multiwalled carbon nanotube (f-MWCNT) by freezing and lyophilization method and physiochemically characterized as bone graft substitutes. Fourier Transform Infrared Spectroscopy, X-Ray Diffraction Analysis, Thermal Gravimetric Analysis, Scanning Electron Microscopy and Optical Microscopy results indicated that the f-MWCNT was uniformly dispersed in chitosan matrix and there was a chemical interaction between chitosan and f-MWCNT. The water uptake ability and porosity of scaffolds increased with an increase the amount of f-MWCNT. The cell proliferation, protein content, alkaline phosphatase and mineralization of the composite scaffolds were higher than chitosan scaffold due to the addition of f-MWCNT. Herewith, we are suggesting that chitosan/f-MWCNT scaffolds are promising biomaterials for bone tissue engineering.


International Journal of Biological Macromolecules | 2012

Chitosan–amylopectin/hydroxyapatite and chitosan–chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering

Jayachandran Venkatesan; Ramjee Pallela; Ira Bhatnagar; Se-Kwon Kim

Over the past few decades, artificial graft materials for bone tissue engineering are gaining much importance. In this study, tri-component scaffolds of chitosan/natural hydroxyapatite with chondroitin sulfate (chitosan-CS/HAp) and amylopectin (chitosan-AP/HAp) have been developed for the first time via freeze-drying method and were characterized physicochemically for bone grafting substitutes. Chemical interactions and dispersion of HAp, CS and AP in the chitosan matrix have been evaluated by various analytical techniques. The porosity and water uptake/retention ability of these composite scaffolds decreased whereas thermal stability increased when compared to the chitosan scaffold. The pore size of the chitosan/HAp, chitosan-CS/HAp and chitosan-AP/HAp scaffolds varied from 60 to 180 μm, 60 to 400 μm and 80 to 500 μm, respectively. Cell proliferation, alkaline phosphatase activity and type-1 collagen production was evaluated in vitro using MG-63 cell line, which was observed to be higher in the composite scaffolds. Excellent interconnected porosity, controlled biodegradation and enhanced cell proliferation of the novel chitosan-CS/HAp and chitosan-AP/HAp scaffolds suggests that these scaffolds are promising biomaterials for bone tissue engineering.


BioMed Research International | 2013

Biosynthesis, Antimicrobial and Cytotoxic Effect of Silver Nanoparticles Using a Novel Nocardiopsis sp. MBRC-1

Panchanathan Manivasagan; Jayachandran Venkatesan; Kalimuthu Senthilkumar; Kannan Sivakumar; Se-Kwon Kim

The biosynthesis of nanoparticles has been proposed as a cost effective environmental friendly alternative to chemical and physical methods. Microbial synthesis of nanoparticles is under exploration due to wide biomedical applications, research interest in nanotechnology and microbial biotechnology. In the present study, an ecofriendly process for the synthesis of nanoparticles using a novel Nocardiopsis sp. MBRC-1 has been attempted. We used culture supernatant of Nocardiopsis sp. MBRC-1 for the simple and cost effective green synthesis of silver nanoparticles. The reduction of silver ions occurred when silver nitrate solution was treated with the Nocardiopsis sp. MBRC-1 culture supernatant at room temperature. The nanoparticles were characterized by UV-visible, TEM, FE-SEM, EDX, FTIR, and XRD spectroscopy. The nanoparticles exhibited an absorption peak around 420 nm, a characteristic surface plasmon resonance band of silver nanoparticles. They were spherical in shape with an average particle size of 45 ± 0.15 nm. The EDX analysis showed the presence of elemental silver signal in the synthesized nanoparticles. The FTIR analysis revealed that the protein component in the form of enzyme nitrate reductase produced by the isolate in the culture supernatant may be responsible for reduction and as capping agents. The XRD spectrum showed the characteristic Bragg peaks of 1 2 3, 2 0 4, 0 4 3, 1 4 4, and 3 1 1 facets of the face centered cubic silver nanoparticles and confirms that these nanoparticles are crystalline in nature. The prepared silver nanoparticles exhibited strong antimicrobial activity against bacteria and fungi. Cytotoxicity of biosynthesized AgNPs against in vitro human cervical cancer cell line (HeLa) showed a dose-response activity. IC50 value was found to be 200 μg/mL of AgNPs against HeLa cancer cells. Further studies are needed to elucidate the toxicity and the mechanism involved with antimicrobial and anticancer activity of the synthesized AgNPs as nanomedicine.


Marine Drugs | 2014

Chitosan-Alginate Biocomposite Containing Fucoidan for Bone Tissue Engineering

Jayachandran Venkatesan; Ira Bhatnagar; Se-Kwon Kim

Over the last few years, significant research has been conducted in the construction of artificial bone scaffolds. In the present study, different types of polymer scaffolds, such as chitosan-alginate (Chi-Alg) and chitosan-alginate with fucoidan (Chi-Alg-fucoidan), were developed by a freeze-drying method, and each was characterized as a bone graft substitute. The porosity, water uptake and retention ability of the prepared scaffolds showed similar efficacy. The pore size of the Chi-Alg and Chi-Alg-fucoidan scaffolds were measured from scanning electron microscopy and found to be 62–490 and 56–437 µm, respectively. In vitro studies using the MG-63 cell line revealed profound cytocompatibility, increased cell proliferation and enhanced alkaline phosphatase secretion in the Chi-Alg-fucoidan scaffold compared to the Chi-Alg scaffold. Further, protein adsorption and mineralization were about two times greater in the Chi-Alg-fucoidan scaffold than the Chi-Alg scaffold. Hence, we suggest that Chi-Alg-fucoidan will be a promising biomaterial for bone tissue regeneration.


Journal of Biomedical Materials Research Part A | 2012

Biophysicochemical evaluation of chitosan‐hydroxyapatite‐marine sponge collagen composite for bone tissue engineering

Ramjee Pallela; Jayachandran Venkatesan; Venkateswara Rao Janapala; Se-Kwon Kim

Tricomponent scaffold systems prepared by natural materials especially of marine origin are gaining much attention nowadays for the application in bone tissue engineering. A novel scaffold (Chi-HAp-MSCol) containing chitosan (Chi), hydroxyapatite (HAp) derived from Thunnus obesus bone and marine sponge (Ircinia fusca) collagen (MSCol) was prepared using freeze-drying and lyophilization method. This biomimetic scaffold, along with the Chi and Chi-HAp scaffolds were characterized biophysicochemically for their comparative significance in bone grafting applications. The structural composition of the chitosan, Chi-Hap, and Chi-HAp-MSCol scaffolds were characterized by Fourier Transform Infrared spectroscopy. The porosity, water uptake, and retention abilities of the composite scaffolds decreased, whereas Thermogravimetric and Differential Thermal Analyses results revealed the increase in thermal stability in the scaffold because of the highly stable HAp and MSCol. Homogeneous dispersion of HAp and MSCol in chitosan matrix with interconnected porosity of 60-180 μm (Chi-HAp) and 50-170 μm (Chi-HAp-MSCol) was observed by Scanning Electron Microscopy, X-ray diffraction, and optical microscopy. Cell proliferation in composite scaffolds was relatively higher than pure chitosan when observed by MTT assay and Hoechst staining in vitro using MG-63 cell line. These observations suggest that the novel Chi-HAp-MSCol composite scaffolds are promising biomaterials for matrix-based bone repair and bone augmentation.

Collaboration


Dive into the Jayachandran Venkatesan's collaboration.

Top Co-Authors

Avatar

Se-Kwon Kim

Pukyong National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baboucarr Lowe

Pukyong National University

View shared research outputs
Top Co-Authors

Avatar

P.N. Sudha

Thiruvalluvar University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramjee Pallela

Pukyong National University

View shared research outputs
Top Co-Authors

Avatar

Min Suk Shim

University of California

View shared research outputs
Top Co-Authors

Avatar

Ira Bhatnagar

Centre for Cellular and Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge