Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jayanta Roy-Chowdhury is active.

Publication


Featured researches published by Jayanta Roy-Chowdhury.


Gastroenterology | 2009

Differentiation and Transplantation of Human Embryonic Stem Cell–Derived Hepatocytes

Hesham Basma; Alejandro Soto-Gutierrez; Govardhana Rao Yannam; Liping Liu; Ryotaro Ito; Toshiyuki Yamamoto; Ewa Ellis; Steven D. Carson; Shintaro Sato; Yong Chen; David Muirhead; Nalu Navarro-Alvarez; Ronald J. Wong; Jayanta Roy-Chowdhury; Jeffrey L. Platt; David F. Mercer; John D. Miller; Stephen C. Strom; Naoya Kobayashi; Ira J. Fox

BACKGROUND & AIMS The ability to obtain unlimited numbers of human hepatocytes would improve the development of cell-based therapies for liver diseases, facilitate the study of liver biology, and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, potentially can differentiate into any cell type, and therefore could be developed as a source of human hepatocytes. METHODS To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein-receptor expression. Characterization was performed by real-time polymerase chain reaction, immunohistochemistry, immunoblot, functional assays, and transplantation. RESULTS Embryonic stem cell-derived hepatocytes expressed liver-specific genes, but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes, and showed human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. CONCLUSIONS Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein-receptor expression and potentially could be used in drug discovery research and developed as therapeutics.


Cell Transplantation | 2012

Improving the techniques for human hepatocyte transplantation: Report from a consensus meeting in London

Juliana Puppi; Stephen C. Strom; Robin D. Hughes; Sanjay Bansal; José V. Castell; Ibrahim Dagher; Ewa Ellis; Greg Nowak; Bo Göran Ericzon; Ira J. Fox; José M. Gómez-Lechón; Chandan Guha; Sanjeev Gupta; Ragai R. Mitry; Kazuo Ohashi; Michael Ott; Lola M. Reid; Jayanta Roy-Chowdhury; Etienne Sokal; Anne Weber; Anil Dhawan

On September 6 and 7, 2009 a meeting was held in London to identify and discuss what are perceived to be current roadblocks to effective hepatocyte transplantation as it is currently practiced in the clinics and, where possible, to offer suggestions to overcome the blocks and improve the outcomes for this cellular therapy. Present were representatives of most of the active clinical hepatocyte transplant programs along with other scientists who have contributed substantial basic research to this field. Over the 2-day sessions based on the experience of the participants, numerous roadblocks or challenges were identified, including the source of cells for the transplants and problems with tracking cells following transplantation. Much of the discussion was focused on methods to improve engraftment and proliferation of donor cells posttransplantation. The group concluded that, for now, parenchymal hepatocytes isolated from donor livers remain the best cell source for transplantation. It was reported that investigations with other cell sources, including stem cells, were at the preclinical and early clinical stages. Numerous methods to modulate the immune reaction and vascular changes that accompany hepatocyte transplantation were proposed. It was agreed that, to obtain sufficient levels of repopulation of liver with donor cells in patients with metabolic liver disease, some form of liver preconditioning would likely be required to enhance the engraftment and/or proliferation of donor cells. It was reported that clinical protocols for preconditioning by hepatic irradiation, portal vein embolization, and surgical resection had been developed and that clinical studies using these protocols would be initiated in the near future. Participants concluded that sharing information between the groups, including standard information concerning the quality and function of the transplanted cells prior to transplantation, clinical information on outcomes, and standard preconditioning protocols, would help move the field forward and was encouraged.


Journal of Hepatology | 2010

Barriers to the successful treatment of liver disease by hepatocyte transplantation

Kyle Soltys; Alejandro Soto-Gutierrez; Masaki Nagaya; Kevin M. Baskin; Melvin Deutsch; Ryotaro Ito; Benjamin L. Shneider; Robert H. Squires; Jerry Vockley; Chandan Guha; Jayanta Roy-Chowdhury; Stephen C. Strom; Jeffrey L. Platt; Ira J. Fox

Management of patients with hepatic failure and liver-based metabolic disorders is complex and expensive. Hepatic failure results in impaired coagulation, altered consciousness and cerebral function, a heightened risk of multiple organ system failure, and sepsis [1]. Such manifold problems are only treatable today and for the foreseeable future by transplantation. In fact, whole or auxiliary partial liver transplantation is often the only available treatment option for severe, even if transient, hepatic failure. Patients with life-threatening liver-based metabolic disorders similarly require organ transplantation even though their metabolic diseases are typically the result of a single enzyme deficiency, and the liver otherwise functions normally. For all of the benefits it may confer, liver transplantation is not an ideal therapy, even for severe hepatic failure. More than 17,000 patients currently await liver transplantation in the United States, a number that seriously underestimates the number of patients that need treatment [2], as it has been estimated that more than a million patients could benefit from transplantation [3]. Unfortunately, use of whole liver transplantation to treat these disorders is limited by a severe shortage of donors and by the risks to the recipient associated with major surgery [4].


PLOS ONE | 2009

Protective role of R-spondin1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice

Payel Bhanja; Subhrajit Saha; Rafi Kabarriti; L. Liu; Namita Roy-Chowdhury; Jayanta Roy-Chowdhury; Rani S. Sellers; Alan A. Alfieri; Chandan Guha

Background Radiation-induced gastrointestinal syndrome (RIGS) results from a combination of direct cytocidal effects on intestinal crypt and endothelial cells and subsequent loss of the mucosal barrier, resulting in electrolyte imbalance, diarrhea, weight loss, infection and mortality. Because R-spondin1 (Rspo1) acts as a mitogenic factor for intestinal stem cells, we hypothesized that systemic administration of Rspo1 would amplify the intestinal crypt cells and accelerate the regeneration of the irradiated intestine, thereby, ameliorating RIGS. Methods and Findings Male C57Bl/6 mice received recombinant adenovirus expressing human R-spondin1 (AdRspo1) or E.coli Lacz (AdLacz), 1–3 days before whole body irradiation (WBI) or abdominal irradiation (AIR). Post-irradiation survival was assessed by Kaplan Meier analysis. RIGS was assessed by histological examination of intestine after hematoxilin and eosin staining, immunohistochemical staining of BrdU incorporation, Lgr5 and β-catenin expression and TUNEL staining. The xylose absorption test (XAT) was performed to evaluate the functional integrity of the intestinal mucosal barrier. In order to examine the effect of R-spondin1 on tumor growth, AdRspo1 and AdLacZ was administered in the animals having palpable tumor and then exposed to AIR. There was a significant increase in survival in AdRspo1 cohorts compared to AdLacZ (p<0.003) controls, following WBI (10.4 Gy). Significant delay in tumor growth was observed after AIR in both cohorts AdRspo1 and AdLacZ but AdRspo1 treated animals showed improved survival compared to AdLacZ. Histological analysis and XAT demonstrated significant structural and functional regeneration of the intestine in irradiated animals following AdRspo1 treatment. Immunohistochemical analysis demonstrated an increase in Lgr5+ve crypt cells and the translocation of β-catenin from the cytosol to nucleus and upregulation of β-catenin target genes in AdRspo1-treated mice, as compared to AdLacz-treated mice. Conclusion Rspo1 promoted radioprotection against RIGS and improved survival of mice exposed to WBI. The mechanism was likely related to induction of the Wnt-β-catenin pathway and promotion of intestinal stem cell regeneration. Rspo1 has protective effect only on normal intestinal tissue but not in tumors after AIR and thereby may increase the therapeutic ratio of chemoradiation therapy in patients undergoing abdominal irradiation for GI malignancies.


Hepatology | 2009

Hepatic irradiation augments engraftment of donor cells following hepatocyte transplantation

Kosho Yamanouchi; Hongchao Zhou; Namita Roy-Chowdhury; Frank Macaluso; Liping Liu; Toshiyuki Yamamoto; Govardhana Rao Yannam; Charles A. Enke; Timothy D. Solberg; Anthony B. Adelson; Jeffrey L. Platt; Ira J. Fox; Jayanta Roy-Chowdhury; Chandan Guha

Engraftment of donor hepatocytes is a critical step that determines the success of hepatocyte transplantation. Rapid and efficient integration of donor cells would enable prompt liver repopulation of these cells in response to selective proliferative stimuli offered by a preparative regimen. We have earlier demonstrated that hepatic irradiation (HIR) in combination with a variety of hepatotrophic growth signals, such as partial hepatectomy and hepatocyte growth factor, can be used as a preparative regimen for liver repopulation of transplanted hepatocytes. In this study, we investigated the effects of HIR on engraftment of transplanted dipeptidyl peptidase IV (DPPIV)–positive hepatocytes in congeneic DPPIV‐deficient rats. HIR‐induced apoptosis of hepatic sinusoidal endothelial cells (SEC) within 6 hours of HIR resulted in dehiscence of the SEC lining in 24 hours. Although there was no change of the number of Kupffer cells after HIR, colloidal carbon clearance decreased 24 hours post HIR, indicating a suppression of phagocytic function. DPPIV+ donor cells were transplanted 24 hours after HIR (0–50 Gy). There was an HIR dose‐dependent increase in the donor hepatocyte mass engrafted in the liver parenchyma. The number of viable transplanted hepatocytes present in hepatic sinusoids or integrated in the parenchyma was greater in the HIR‐treated group at 3 and 7 days after transplantation compared with the sham controls. Finally, we validated these rodent studies in cynomolgus monkeys, demonstrating that a single 10‐Gy dose of HIR was sufficient to enhance engraftment of donor porcine hepatocytes. These data indicate that transient disruption of the SEC barrier and inhibition of the phagocytic function of Kupffer cells by HIR enhances hepatocyte engraftment and the integrated donor cell mass. Thus, preparative HIR could be potentially useful to augment hepatocyte transplantation. (HEPATOLOGY 2009;49:258‐267.)


Proceedings of the National Academy of Sciences of the United States of America | 2006

Alanine–glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer

Eduardo Salido; Xiao M. Li; Yang Lu; Xia Wang; Alfredo Santana; Namita Roy-Chowdhury; Armando Torres; Larry J. Shapiro; Jayanta Roy-Chowdhury

Mutations in the alanine–glyoxylate amino transferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. We generated a null mutant mouse by targeted mutagenesis of the homologous gene, Agxt, in embryonic stem cells. Mutant mice developed normally, and they exhibited hyperoxaluria and crystalluria. Approximately half of the male mice in mixed genetic background developed calcium oxalate urinary stones. Severe nephrocalcinosis and renal failure developed after enhancement of oxalate production by ethylene glycol administration. Hepatic expression of human AGT1, the protein encoded by AGXT, by adenoviral vector-mediated gene transfer in Agxt−/− mice normalized urinary oxalate excretion and prevented oxalate crystalluria. Subcellular fractionation and immunofluorescence studies revealed that, as in the human liver, the expressed wild-type human AGT1 was predominantly localized in mouse hepatocellular peroxisomes, whereas the most common mutant form of AGT1 (G170R) was localized predominantly in the mitochondria.


Cell Transplantation | 1998

Long-term amerlioration of bilirubin glucuronidation defect in gunn rats by transplanting genetically modified immortalized autologous hepatocytes

Kouji Tada; Namita Roy-Chowdhury; Vinayaka R. Prasad; Byung Ho Kim; P. Manchikalapudi; Ira J. Fox; Peter Van Duijvendijk; Piter J. Bosma; Jayanta Roy-Chowdhury

Ex vivo gene therapy, in which hepatocytes are harvested from mutants, retrovirally transduced with a normal gene and transplanted back into the donor, has been used for correction of inherited metabolic defects of liver. Major drawbacks of this method include limited availability of autologous hepatocytes, inefficient retroviral transduction of primary hepatocytes, and the limited number of hepatocytes that can be transplanted safely. To obviate these problems, we transduced primary hepatocytes derived from inbred bilirubin-UDP-glucuronosyl-transferase (BUGT)-deficient Gunn rats by infection with a recombinant retrovirus expressing temperature-sensitive mutant SV40 large T antigen (tsT). The immortalized cells were then transduced with a second recombinant retrovirus expressing human B-UGT, and a clone expressing high levels of the enzyme was expanded by culturing at permissive temperature (33 degrees C). At 37 degrees C, tsT antigen was degraded and the cells expressed UGT activity toward bilirubin at a level approximately twice that present in normal rat liver homogenates. For seeding the cells into the liver bed, 1 x 10(7) cells were injected into the spleens of syngeneic Gunn rats five times at 10-day intervals. Excretion of bilirubin glucuronides in bile was demonstrated by HPLC analysis and serum bilirubin levels were reduced by 27 to 52% in 40 days after the first transplantation and remained so throughout the duration of the study (120 days). None of the transplanted Gunn rats or SCID mice transplanted with the immortalized cells developed tumors.


Journal of Clinical Investigation | 2011

Spontaneous hepatic repopulation in transgenic mice expressing mutant human α1-antitrypsin by wild-type donor hepatocytes

Jianqiang Ding; Govardhana Rao Yannam; Namita Roy-Chowdhury; Tunda Hidvegi; Hesham Basma; Stephen I. Rennard; Ronald J. Wong; Yesim Avsar; Chandan Guha; David H. Perlmutter; Ira J. Fox; Jayanta Roy-Chowdhury

α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z-expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%-98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z-expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals.


American Journal of Nephrology | 2005

Feasibility of Hepatocyte Transplantation-Based Therapies for Primary Hyperoxalurias

Chandan Guha; Kosho Yamanouchi; Jinlan Jiang; Xia Wang; Namita Roy Chowdhury; Alfredo Santana; Lawrence J. Shapiro; Eduardo Salido; Jayanta Roy-Chowdhury

Primary hyperoxalurias (PHs) are diseases caused by overproduction of oxalate by hepatocytes. Most patients with PHs develop nephrocalcinosis and renal failure. Combined liver-kidney transplantation is often used as a definitive treatment of PHs, but because of a large body oxalate load at the time of transplantation, the procedure is not always successful. Because all hepatocytes overproduce oxalate, partial liver replacement procedures, such as auxiliary transplantation of a liver lobe or hepatocyte transplantation are not expected to be useful in this disorder. In this paper we describe novel techniques, based on preparative hepatic irradiation and stimulation of hepatocyte mitosis, through loss of liver mass or administration of hepatic growth factor, which permit transplanted wild-type hepatocytes to massively repopulate the liver, replacing up to 90% of the hepatocytes in recipient mouse livers. Application of this procedure in a recently developed Agxt-gene-deleted mouse model of PH1 resulted in marked amelioration of hyperoxaluria. We propose that further refinement of the different components of this procedure may permit early cell-based therapies of PHs, thereby preventing renal failure and its complications.


Gene Therapy | 2003

A novel strategy for in vivo expansion of transplanted hepatocytes using preparative hepatic irradiation and FasL-induced hepatocellular apoptosis

M Takahashi; Niloy J. Deb; Sung W. Lee; J Furgueil; T Okuyama; Namita Roy-Chowdhury; B Vikram; Jayanta Roy-Chowdhury; C Guha

A strategy for inducing preferential proliferation of the engrafted hepatocytes over host liver cells should markedly increase the benefit of hepatocyte transplantation for the treatment of liver diseases and ex vivo gene therapy. We hypothesized that preparative hepatic irradiation (HIR) to inhibit host hepatocellular regeneration in combination with the mitotic stimulus of host hepatocellular apoptosis should permit repopulation of the liver by transplanted cells. To test this hypothesis, congeneic normal rat hepatocytes were transplanted into UDP-glucuronosyltransferase (UGT1A1)-deficient jaundiced Gunn rats (a model of Crigler-Najjar syndrome type I), following HIR and adenovirus-mediated FasL gene transfer. Progressive repopulation of the liver by engrafted UGT1A1-proficient hepatocytes over 5 months was demonstrated by the appearance of UGT1A1 protein and enzyme activity in the liver, biliary bilirubin glucuronides secretion, and long-term normalization of serum bilirubin levels. This is the first demonstration of massive hepatic repopulation by transplanted cells by HIR and FasL-induced controlled apoptosis of host liver cells.

Collaboration


Dive into the Jayanta Roy-Chowdhury's collaboration.

Top Co-Authors

Avatar

Namita Roy-Chowdhury

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Chandan Guha

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ira J. Fox

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xia Wang

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

L. Liu

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Alan A. Alfieri

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hongchao Zhou

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Niloy J. Deb

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Rafi Kabarriti

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge