Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jayanthi Maniam is active.

Publication


Featured researches published by Jayanthi Maniam.


Psychoneuroendocrinology | 2010

Voluntary exercise and palatable high-fat diet both improve behavioural profile and stress responses in male rats exposed to early life stress: role of hippocampus.

Jayanthi Maniam; Margaret J. Morris

Childhood trauma induced by adverse early life experience is associated with increased risk of psychological disorders in adulthood. Disruption of normal development has been shown to affect hippocampal morphology and function, influencing adaptations to stress. Here we investigated whether palatable food and/or exercise would ameliorate the behavioural responses following early life stress in rats. Rats were subjected to 15 (S15) or 180 (S180) minutes separation from dams on postnatal days 2-14. After weaning, rats were assigned to either receive chow (C), high-fat diet (HFD), voluntary exercise (running, R), or combined HFD and R for 11 weeks. In addition to anxiety- and depression-like behaviours, response to restraint stress was measured. Glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF) and 5-hydroxytryptamine receptor 1A (5HT1A) receptor mRNA in the hippocampus were measured. S180 rats had similar body weight to S15, however their plasma insulin concentrations were double those of S15 rats when consuming HFD; adding exercise reduced plasma insulin. Anxiety-like behaviour in S180 rats, measured using Light Dark test (LDT) and Elevated Plus Maze (EPM) were ameliorated by the provision of HFD, R or HFD+R. A similar effect was observed on depression-like behaviour assessed by forced swim test (FST), with less time being spent immobile. Exposure to early-life stress during development was associated with significant reductions in hippocampal GR, 5HT1A receptor and BDNF mRNA, and these changes were normalized in S180 rats provided with HFD or exercise. Prolonged maternal separation resulted in exacerbated hyperinsulinemia when consuming HFD suggesting that these rats are metabolically disadvantaged. In summary, voluntary exercise alone or in combination with HFD produced beneficial effects on both behaviour and metabolic outcomes in rats exposed to early life stress.


Brain Behavior and Immunity | 2014

Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats

Jessica E. Beilharz; Jayanthi Maniam; Margaret J. Morris

High energy diets have been shown to impair cognition however, the rapidity of these effects, and the dietary component/s responsible are currently unclear. We conducted two experiments in rats to examine the effects of short-term exposure to a diet rich in sugar and fat or rich in sugar on object (perirhinal-dependent) and place (hippocampal-dependent) recognition memory, and the role of inflammatory mediators in these responses. In Experiment 1, rats fed a cafeteria style diet containing chow supplemented with lard, cakes, biscuits, and a 10% sucrose solution performed worse on the place, but not the object recognition task, than chow fed control rats when tested after 5, 11, and 20 days. In Experiment 2, rats fed the cafeteria style diet either with or without sucrose and rats fed chow supplemented with sucrose also performed worse on the place, but not the object recognition task when tested after 5, 11, and 20 days. Rats fed the cafeteria diets consumed five times more energy than control rats and exhibited increased plasma leptin, insulin and triglyceride concentrations; these were not affected in the sucrose only rats. Rats exposed to sucrose exhibited both increased hippocampal inflammation (TNF-α and IL-1β mRNA) and oxidative stress, as indicated by an upregulation of NRF1 mRNA compared to control rats. In contrast, these markers were not significantly elevated in rats that received the cafeteria diet without added sucrose. Hippocampal BDNF and neuritin mRNA were similar across all groups. These results show that relatively short exposures to diets rich in both fat and sugar or rich in sugar, impair hippocampal-dependent place recognition memory prior to the emergence of weight differences, and suggest a role for oxidative stress and neuroinflammation in this impairment.


Neuroscience & Biobehavioral Reviews | 2015

Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition

Margaret J. Morris; Jessica E. Beilharz; Jayanthi Maniam; Amy C. Reichelt; R. Frederick Westbrook

Changes in food composition and availability have contributed to the dramatic increase in obesity over the past 30-40 years in developed and, increasingly, in developing countries. The brain plays a critical role in regulating energy balance. Some human studies have demonstrated increased preference for high fat and high sugar foods in people reporting greater stress exposure. We have examined neurochemical changes in the brain in rodent models during the development of obesity, including the impact of obesity on cognition, reward neurocircuitry and stress responsiveness. Using supermarket foods high in fat and sugar, we showed that such a diet leads to changes in neurotransmitters involved in the hedonic appraisal of foods, indicative of an addiction-like capacity of foods high in fat and/or sugar. Importantly, withdrawal of the palatable diet led to a stress-like response. Furthermore, access to this palatable diet attenuated the physiological effects of acute stress (restraint), indicating that it could act as a comfort food. In more chronic studies, the diet also attenuated anxiety-like behavior in rats exposed to stress (maternal separation) early in life, but these rats may suffer greater metabolic harm than rats exposed to the early life stressor but not provided with the palatable diet. Impairments in cognitive function have been associated with obesity in both people and rodents. However, as little as 1 week of exposure to a high fat, high sugar diet selectively impaired place but not object recognition memory in the rat. Excess sugar alone had similar effects, and both diets were linked to increased inflammatory markers in the hippocampus, a critical region involved in memory. Obesity-related inflammatory changes have been found in the human brain. Ongoing work examines interventions to prevent or reverse diet-induced cognitive impairments. These data have implications for minimizing harm caused by unhealthy eating.


Frontiers in Endocrinology | 2014

Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes

Jayanthi Maniam; Christopher P. Antoniadis; Margaret J. Morris

Stress activates the hypothalamic–pituitary–adrenal (HPA) axis, which then modulates the degree of adaptation and response to a later stressor. It is known that early-life stress can impact on later health but less is known about how early-life stress impairs HPA axis activity, contributing to maladaptation of the stress–response system. Early-life stress exposure (either prenatally or in the early postnatal period) can impact developmental pathways resulting in lasting structural and regulatory changes that predispose to adulthood disease. Epidemiological, clinical, and experimental studies have demonstrated that early-life stress produces long term hyper-responsiveness to stress with exaggerated circulating glucocorticoids, and enhanced anxiety and depression-like behaviors. Recently, evidence has emerged on early-life stress-induced metabolic derangements, for example hyperinsulinemia and altered insulin sensitivity on exposure to a high energy diet later in life. This draws our attention to the contribution of later environment to disease vulnerability. Early-life stress can alter the expression of genes in peripheral tissues, such as the glucocorticoid receptor and 11-beta hydroxysteroid dehydrogenase (11β-HSD1). We propose that interactions between altered HPA axis activity and liver 11β-HSD1 modulates both tissue and circulating glucocorticoid availability, with adverse metabolic consequences. This review discusses the potential mechanisms underlying early-life stress-induced maladaptation of the HPA axis, and its subsequent effects on energy utilization and expenditure. The effects of positive later environments as a means of ameliorating early-life stress-induced health deficits, and proposed mechanisms underpinning the interaction between early-life stress and subsequent detrimental environmental exposures on metabolic risk will be outlined. Limitations in current methodology linking early-life stress and later health outcomes will also be addressed.


Nutrients | 2015

Diet-Induced Cognitive Deficits: The Role of Fat and Sugar, Potential Mechanisms and Nutritional Interventions

Jessica E. Beilharz; Jayanthi Maniam; Margaret J. Morris

It is of vital importance to understand how the foods which are making us fat also act to impair cognition. In this review, we compare the effects of acute and chronic exposure to high-energy diets on cognition and examine the relative contributions of fat (saturated and polyunsaturated) and sugar to these deficits. Hippocampal-dependent memory appears to be particularly vulnerable to the effects of high-energy diets and these deficits can occur rapidly and prior to weight gain. More chronic diet exposure seems necessary however to impair other sorts of memory. Many potential mechanisms have been proposed to underlie diet-induced cognitive decline and we will focus on inflammation and the neurotrophic factor, brain-derived neurotrophic factor (BDNF). Finally, given supplementation of diets with omega-3 and curcumin has been shown to have positive effects on cognitive function in healthy ageing humans and in disease states, we will discuss how these nutritional interventions may attenuate diet-induced cognitive decline. We hope this approach will provide important insights into the causes of diet-induced cognitive deficits, and inform the development of novel therapeutics to prevent or ameliorate such memory impairments.


Behavioural Brain Research | 2014

Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress

Sarah I. Martire; Jayanthi Maniam; Timothy South; Nathan M. Holmes; R. Fred Westbrook; Margaret J. Morris

Like people, rodents exposed to energy-rich foods over-eat and become overweight. Removal of this diet activates stress systems, which may explain why people have difficulty dieting. We exposed rats to energy-rich foods in order to identify changes in the brain induced by that diet and by its removal. Sprague Dawley rats were fed lab-chow or an energy-rich cafeteria diet (plus chow). Following 6 or 15 weeks, half of each group was switched to the opposing diet. Rats were culled 48-h later. We measured fat mass, plasma hormones, and assessed brains for mRNA expression of several genes. Cafeteria-fed rats consumed more kilojoules, weighed more and had elevated leptin (plus reduced CORT at 15 weeks) relative to chow-fed rats. Fifteen weeks of cafeteria diet suppressed μ-opioid and CB1 receptor mRNA in the VTA, but elevated amygdala GR, and 6 weeks of cafeteria diet reduced BDNF, compared to chow-fed rats. Rats switched to the cafeteria diet ate similar amounts as rats maintained on the diet, and switching to cafeteria diet after 15 weeks reduced amygdala GR expression. Rats switched to chow ate less than rats maintained on chow, and switching to chow following 15 weeks of cafeteria diet increased hypothalamic CRH mRNA. Therefore, 15 weeks of cafeteria diet produced changes in brain regions implicated in reward processes. Switching these rats to chow activated the HPA axis, while switching chow-fed rats to the cafeteria diet decreased GR expression in the amygdala, a region associated with stress. These findings have implications for dieting in humans.


Behavioural Brain Research | 2016

Short-term exposure to a diet high in fat and sugar, or liquid sugar, selectively impairs hippocampal-dependent memory, with differential impacts on inflammation.

Jessica E. Beilharz; Jayanthi Maniam; Margaret J. Morris

Chronic high-energy diets are known to induce obesity and impair memory; these changes have been associated with inflammation in brain areas crucial for memory. In this study, we investigated whether inflammation could also be related to diet-induced memory deficits, prior to obesity. We exposed rats to chow, chow supplemented with a 10% sucrose solution (Sugar) or a diet high in fat and sugar (Caf+Sugar) and assessed hippocampal-dependent and perirhinal-dependent memory at 1 week. Both high-energy diet groups displayed similar, selective hippocampal-dependent memory deficits despite the Caf+Sugar rats consuming 4-5 times more energy, and weighing significantly more than the other groups. Extreme weight gain and excessive energy intake are therefore not necessary for deficits in memory. Weight gain across the diet period however, was correlated with the memory deficits, even in the Chow rats. The Sugar rats had elevated expression of a number of inflammatory genes in the hippocampus and WAT compared to Chow and Caf+Sugar rats but not in the perirhinal cortex or hypothalamus. Blood glucose concentrations were also elevated in the Sugar rats, and were correlated with the hippocampal inflammatory markers. Together, these results indicate that liquid sugar can rapidly elevate markers of central and peripheral inflammation, in association with hyperglycemia, and this may be related to the memory deficits in the Sugar rats.


Brain Behavior and Immunity | 2016

The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity.

Jessica E. Beilharz; Nadeem O. Kaakoush; Jayanthi Maniam; Margaret J. Morris

Short-term exposure to high-energy diets impairs memory but there is little data on the relative contributions of fat and sugar to these deficits or the mechanisms responsible. Here, we investigated how these different macronutrients affect memory, neuroinflammation and neuroplasticity markers and the gut microbiota. Rats were fed matched purified diets for 2weeks; Control, Sugar, Saturated Fatty Acid (SFA) or Polyunsaturated Fatty Acid (PUFA), which varied only in the percentage of energy available from sugar and the amount and type of fat. Rats consuming SFA and Sugar were impaired on hippocampal-dependent place recognition memory compared to Controls and PUFA rats, despite all rats consuming similar amounts of energy. All rats performed comparably on the object recognition task. Hippocampal and hypothalamic inflammatory markers were not substantially affected by the diets and there was no change in the neuroplasticity marker, brain-derived neurotrophic factor. Each of the diets significantly altered the microbial composition in distinct ways. Specifically, the relative abundance of 89 taxa differed significantly between groups with the majority of these changes accounted for by the Clostridiales order and within that, Lachnospiraceae and Ruminococcaceae. These taxa showed a range of macronutrient specific correlations with place memory. In addition, Distance based Linear Models found relationships between memory, inflammation-related hippocampal genes and the gut microbiota. In conclusion, our study shows that the macronutrient profile of the diet is crucial for diet-induced memory deficits and suggests a possible link between diet, the gut microbiota and hippocampal inflammatory genes.


Psychoneuroendocrinology | 2016

A diet high in fat and sugar reverses anxiety-like behaviour induced by limited nesting in male rats: Impacts on hippocampal markers.

Jayanthi Maniam; Christopher P. Antoniadis; Vivian Le; Margaret J. Morris

Stress exposure during early development is known to produce long-term mental health deficits. Stress promotes poor lifestyle choices such as poor diet. Early life adversity and diets high in fat and sugar (HFHS) are known to affect anxiety and memory. However additive effects of HFHS and stress during early development are less explored. Here, we examined whether early life stress (ELS) simulated by limited nesting (LN) induces anxiety-like behaviour and cognitive deficits that are modulated by HFHS diet. We examined key hippocampal markers involved in anxiety and cognition, testing the hypothesis that post-weaning HFHS following ELS would ameliorate anxiety-like behaviour but worsen memory and associated hippocampal changes. Sprague-Dawley rats were exposed to LN, postnatal days 2-9, and at weaning, male siblings were given unlimited access to chow or HFHS resulting in (Con-Chow, Con-HFHS, LN-Chow, LN-HFHS, n=11-15/group). Anxiety-like behaviour was assessed by Elevated Plus Maze (EPM) at 10 weeks and spatial and object recognition tested at 11 weeks of age. Rats were culled at 13 weeks. Hippocampal mRNA expression was measured using TaqMan(®) Array Micro Fluidic cards (Life Technologies). As expected HFHS diet increased body weight; LN and control rats had similar weights at 13 weeks, energy intake was also similar across groups. LN-Chow rats showed increased anxiety-like behaviour relative to control rats, but this was reversed by HFHS diet. Spatial and object recognition memory were unaltered by LN exposure or consumption of HFHS diet. Hippocampal glucocorticoid receptor (GR) protein was not affected by LN exposure in chow rats, but was increased by 45% in HFHS rats relative to controls. Hippocampal genes involved in plasticity and mood regulation, GSKα and GSKβ were affected, with reductions in GSKβ under both diet conditions, and reduced GSKα only in LN-HFHS versus Con-HFHS. Interestingly, HFHS diet and LN exposure independently reduced expression of Akt3 mRNA, a key gene involved post-natal brain development. In summary, while an energy rich diet ameliorated anxiety-like behaviour induced by LN exposure, it significantly altered key genes that are essential for hippocampal development.


Frontiers in Endocrinology | 2015

Early Life Stress Induced by Limited Nesting Material Produces Metabolic Resilience in Response to a High-Fat and High-Sugar Diet in Male Rats

Jayanthi Maniam; Christopher P. Antoniadis; Kristy W. Wang; Margaret J. Morris

Environmental conditions experienced in early life can profoundly influence long-term metabolic health, but the additive impact of poor nutrition is poorly understood. Here, we tested the hypothesis that early life stress (ELS) induced by limited nesting material (LN) combined with high-fat and high-sugar diet (HFHS) post-weaning would worsen diet-related metabolic risk. Sprague-Dawley male rats were exposed to LN, postnatal days 2–9, and at weaning (3 weeks), siblings were given unlimited access to chow or HFHS resulting in (Con-Chow, Con-HFHS, LN-Chow, and LN-HFHS, n = 11–15/group). Glucose and insulin tolerance were tested and rats were killed at 13 weeks. LN rats weighed less at weaning but were not different to control at 13 weeks; HFHS diet led to similar increases in body weight. LN-chow rats had improved glucose and insulin tolerance relative to Con-Chow, whereas LN-HFHS improved insulin sensitivity versus Con-HFHS, associated with increased peroxisome proliferator-activated receptor gamma co-activator-1-alpha (Pgc-1α) mRNA in muscle. No effect of LN on plasma or liver triglycerides was observed, and hepatic gluconeogenic regulatory genes were unaltered. In summary, this study demonstrates that ELS induced by LN conferred some metabolic protection against insulin and/or glucose intolerance in a diet-dependent manner during adulthood.

Collaboration


Dive into the Jayanthi Maniam's collaboration.

Top Co-Authors

Avatar

Margaret J. Morris

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica E. Beilharz

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Kerry-Anne Rye

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Kwok Leung Ong

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy C. Reichelt

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Larisa Bobrovskaya

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Lin Kooi Ong

University of Newcastle

View shared research outputs
Researchain Logo
Decentralizing Knowledge