Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jayashree Aiyar is active.

Publication


Featured researches published by Jayashree Aiyar.


Journal of Biological Chemistry | 1999

Calmodulin Mediates Calcium-dependent Activation of the Intermediate Conductance KCa Channel,IKCa1

Christopher M. Fanger; Sanjiv Ghanshani; Naomi J. Logsdon; Heiko Rauer; Katalin Kalman; Jianming Zhou; Kathy Beckingham; K. George Chandy; Michael D. Cahalan; Jayashree Aiyar

Small and intermediate conductance Ca2+-activated K+ channels play a crucial role in hyperpolarizing the membrane potential of excitable and nonexcitable cells. These channels are exquisitely sensitive to cytoplasmic Ca2+, yet their protein-coding regions do not contain consensus Ca2+-binding motifs. We investigated the involvement of an accessory protein in the Ca2+-dependent gating of hIKCa1, a human intermediate conductance channel expressed in peripheral tissues. Cal- modulin was found to interact strongly with the cytoplasmic carboxyl (C)-tail of hIKCa1 in a yeast two-hybrid system. Deletion analyses defined a requirement for the first 62 amino acids of the C-tail, and the binding of calmodulin to this region did not require Ca2+. The C-tail ofhSKCa3, a human neuronal small conductance channel, also bound calmodulin, whereas that of a voltage-gated K+channel, mKv1.3, did not. Calmodulin co-precipitated with the channel in cell lines transfected with hIKCa1, but not with mKv1.3-transfected lines. A mutant calmodulin, defective in Ca2+ sensing but retaining binding to the channel, dramatically reduced current amplitudes when co-expressed withhIKCa1 in mammalian cells. Co-expression with varying amounts of wild-type and mutant calmodulin resulted in a dominant-negative suppression of current, consistent with four calmodulin molecules being associated with the channel. Taken together, our results suggest that Ca2+-calmodulin-induced conformational changes in all four subunits are necessary for the channel to open.


Neuron | 1995

Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins

Jayashree Aiyar; Jane M. Withka; James P. Rizzi; David H. Singleton; Glenn C. Andrews; Wen Lin; James G. Boyd; Douglas C. Hanson; Mariella Simon; Brent A. Dethlefs; Chao-lin Lee; James E. Hall; George A. Gutman; K. George Chandy

The architecture of the pore-region of a voltage-gated K+ channel, Kv1.3, was probed using four high affinity scorpion toxins as molecular calipers. We established the structural relatedness of these toxins by solving the structures of kaliotoxin and margatoxin and comparing them with the published structure of charybdotoxin; a homology model of noxiustoxin was then developed. Complementary mutagenesis of Kv1.3 and these toxins, combined with electrostatic compliance and thermodynamic mutant cycle analyses, allowed us to identify multiple toxin-channel interactions. Our analyses reveal the existence of a shallow vestibule at the external entrance to the pore. This vestibule is approximately 28-32 A wide at its outer margin, approximately 28-34 A wide at its base, and approximately 4-8 A deep. The pore is 9-14 A wide at its external entrance and tapers to a width of 4-5 A at a depth of approximately 5-7 A from the vestibule. This structural information should directly aid in developing topological models of the pores of related ion channels and facilitate therapeutic drug design.


Journal of Biological Chemistry | 1996

The Signature Sequence of Voltage-gated Potassium Channels Projects into the External Vestibule

Jayashree Aiyar; Rizzi Jp; George A. Gutman; K. G. Chandy

A highly conserved motif, GYGD, contributes to the formation of the ion selectivity filter in voltage-gated K+ channels and is thought to interact with the scorpion toxin residue, Lys27. By probing the pore of the Kv1.3 channel with synthetic kaliotoxin-Lys27 mutants, each containing a non-natural lysine analog of a different length, and using mutant cycle analysis, we determined the spatial locations of Tyr400 and Asp402 in the GYGD motif, relative to His404 located at the base of the outer vestibule. Our data indicate that the terminal amines of the shorter Lys27 analogs lie close to His404 and to Asp402, while Lys27 itself interacts with Tyr400. Based on these data, we developed a molecular model of this region of the channel. The junction between the outer vestibule and the pore is defined by a ring (∼8-9-Å diameter) formed from alternating Asp402 and His404 residues. Tyr400 lies 4-6 Å deeper into the pore, and its interaction with kaliotoxin-Lys27 is in competition with K+ ions. Studies with dimeric Kv1.3 constructs suggest that two Tyr400 residues in the tetramer are sufficient to bind K+ ions. Thus, at least part of the K+ channel signature sequence extends into a shallow trough at the center of a wide external vestibule.


Journal of Biological Chemistry | 2000

Structure-guided Transformation of Charybdotoxin Yields an Analog That Selectively Targets Ca2+-activated over Voltage-gated K+ Channels

Heiko Rauer; M. D. Lanigan; Michael W. Pennington; Jayashree Aiyar; Sanjiv Ghanshani; Michael D. Cahalan; R. S. Norton; K. G. Chandy

We have used a structure-based design strategy to transform the polypeptide toxin charybdotoxin, which blocks several voltage-gated and Ca2+-activated K+channels, into a selective inhibitor. As a model system, we chose two channels in T-lymphocytes, the voltage-gated channel Kv1.3and the Ca2+-activated channel IKCa1. Homology models of both channels were generated based on the crystal structure of the bacterial channel KcsA. Initial docking of charybdotoxin was undertaken with both models, and the accuracy of these docking configurations was tested by mutant cycle analyses, establishing that charybdotoxin has a similar docking configuration in the external vestibules of IKCa1 and Kv1.3. Comparison of the refined models revealed a unique cluster of negatively charged residues in the turret of Kv1.3, not present in IKCa1. To exploit this difference, three novel charybdotoxin analogs were designed by introducing negatively charged residues in place of charybdotoxin Lys32, which lies in close proximity to this cluster. These analogs block IKCa1with ∼20-fold higher affinity than Kv1.3. The other charybdotoxin-sensitive Kv channels, Kv1.2 andKv1.6, contain the negative cluster and are predictably insensitive to the charybdotoxin position 32 analogs, whereas the maxi-KCa channel, hSlo, lacking the cluster, is sensitive to the analogs. This provides strong evidence for topological similarity of the external vestibules of diverse K+channels and demonstrates the feasibility of using structure-based strategies to design selective inhibitors for mammalian K+channels. The availability of potent and selective inhibitors ofIKCa1 will help to elucidate the role of this channel in T-lymphocytes during the immune response as well as in erythrocytes and colonic epithelia.


Journal of Biological Chemistry | 1997

Purification, Visualization, and Biophysical Characterization of Kv1.3 Tetramers

Spencer Rh; Yuri Sokolov; Li H; Takenaka B; Anthony J. Milici; Jayashree Aiyar; Angela Nguyen; Park H; Jap Bk; James E. Hall; George A. Gutman; K. G. Chandy

The voltage-gated K+ channel of T-lymphocytes, Kv1.3, was heterologously expressed in African Green Monkey kidney cells (CV-1) using a vaccinia virus/T7 hybrid expression system; each infected cell exhibited 104 to 5 × 105 functional channels on the cell surface. The protein, solubilized with detergent (3-[cholamidopropyl)dimethylammonio]-1-propanesulfonic acid or cholate), was purified to near-homogeneity by a single nickel-chelate chromatography step. The Kv1.3 protein expressed in vaccinia virus-infected cells and its purified counterpart are both modified by a ∼2-kDa core-sugar moiety, most likely at a conserved N-glycosylation site in the external S1-S2 loop; absence of the sugar does not alter the biophysical properties of the channel nor does it affect expression levels. Purified Kv1.3 has an estimated size of ∼64 kDa in denaturing SDS-polyacrylamide electrophoresis gels, consistent with its predicted size based on the amino acid sequence. By sucrose gradient sedimentation, purified Kv1.3 is seen primarily as a single peak with an approximate mass of 270 kDa, compatible with its being a homotetrameric complex of the ∼64-kDa subunits. When reconstituted in the presence of lipid and visualized by negative-staining electron microscopy, the purified Kv1.3 protein forms small crystalline domains consisting of tetramers with dimensions of ∼65 × 65 Å. The center of each tetramer contains a stained depression which may represent the ion conduction pathway. Functional reconstitution of the Kv1.3 protein into lipid bilayers produces voltage-dependent K+-selective currents that can be blocked by two high affinity peptide antagonists of Kv1.3, margatoxin and stichodactylatoxin.


The Journal of Physiology | 1998

Regulation of mammalian Shaker‐related K+ channels: evidence for non‐conducting closed and non‐conducting inactivated states

Heike Jäger; Heiko Rauer; Angela N. Nguyen; Jayashree Aiyar; K. George Chandy; Stephan Grissmer

1 Using the whole‐cell recording mode we have characterized two non‐conducting states in mammalian Shaker‐related voltage‐gated K+ channels induced by the removal of extracellular potassium, K+o. 2 In the absence of K+o, current through Kv1.4 was almost completely abolished due to the presence of a charged lysine residue at position 533 at the entrance to the pore. Removal of K+o had a similar effect on current through Kv1.3 when the histidine at the homologous position (H404) was protonated (pH 6.0). Channels containing uncharged residues at the corresponding position (Kv1.1: Y; Kv1.2: V) did not exhibit this behaviour. 3 To characterize the nature of the interaction between Kv1.3 and K+o concentration ([K+]o), we replaced H404 with amino acids of different character, size and charge. Substitution of hydrophobic residues (A, V and L) either in all four subunits or in only two subunits in the tetramer made the channel insensitive to the removal of K+o, possibly by stabilizing the channel complex. Replacement of H404 with the charged residue arginine, or the polar residue asparagine, enhanced the sensitivity of the channel to 0 mm K+o, possibly by making the channel unstable in the absence of K+o. Mutation at a neighbouring position (400) had a similar effect. 4 The effect of removing K+o on current amplitude does not seem to be correlated with the rate of C‐type inactivation since the slowly inactivating G380F mutant channel exhibited a similar [K+]o dependence as the wild‐type Kv1.3 channel. 5 CP‐339,818, a drug that recognizes only the inactivated conformation of Kv1.3, could not block current in the absence of K+o unless the channels were inactivated through depolarizing pulses. 6 We conclude that removal of K+o induces the Kv1.3 channel to transition to a non‐conducting ‘closed’ state which can switch into a non‐conducting ‘inactivated’ state upon depolarization.


Biophysical Journal | 1994

The P-region and S6 of Kv3.1 contribute to the formation of the ion conduction pathway.

Jayashree Aiyar; A. N. Nguyen; K. G. Chandy; S. Grissmer

The loop between transmembrane regions S5 and S6 (P-region) of voltage-gated K+ channels has been proposed to form the ion-conducting pore, and the internal part of this segment is reported to be responsible for ion permeation and internal tetraethylammonium (TEA) binding. The two T-cell K+ channels, Kv3.1 and Kv1.3, with widely divergent pore properties, differ by a single residue in this internal P-region, leucine 401 in Kv3.1 corresponding to valine 398 in Kv1.3. The L401V mutation in Kv3.1 was created with the anticipation that the mutant channel would exhibit Kv1.3-like deep-pore properties. Surprisingly, this mutation did not alter single channel conductance and only moderately enhanced internal TEA sensitivity, indicating that residues outside the P-region influence these properties. Our search for additional residues was guided by the model of Durell and Guy, which predicted that the C-terminal end of S6 formed part of the K+ conduction pathway. In this segment, the two channels diverge at only one position, Kv3.1 containing M430 in place of leucine in Kv1.3. The M430L mutant of Kv3.1 exhibited permeant ion- and voltage-dependent flickery outward single channel currents, with no obvious changes in other pore properties. Modification of one or more ion-binding sites located in the electric field and possibly within the channel pore could give rise to this type of channel flicker.


Journal of Biological Chemistry | 1996

Characterization of the Transcription Unit of Mouse Kv1.4, a Voltage-gated Potassium Channel Gene

Wymore Rs; Negulescu D; Kinoshita K; Katalin Kalman; Jayashree Aiyar; George A. Gutman; K. G. Chandy


Genomics | 1994

Genomic organization, nucleotide sequence, biophysical properties, and localization of the voltage-gated K+ channel gene KCNA4/Kv1.4 to mouse chromosome 2/human 11p14 and mapping of KCNC1/Kv3.1 to mouse 7/human 11p14.3- p15.2 and KCNA1/Kv1.1 to human 12p13

Randy S. Wymore; Julie R. Korenberg; Keith D. Kinoshita; Jayashree Aiyar; Christopher Coyne; Xiao Ning Chen; Carolyn M. Hustad; Neal G. Copeland; George A. Gutman; Nancy A. Jenkins; K. George Chandy


American Journal of Physiology-cell Physiology | 1993

Full-length and truncated Kv1.3 K+ channels are modulated by 5-HT1c receptor activation and independently by PKC

Jayashree Aiyar; S. Grissmer; K. G. Chandy

Collaboration


Dive into the Jayashree Aiyar's collaboration.

Top Co-Authors

Avatar

K. G. Chandy

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naomi J. Logsdon

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Heiko Rauer

University of California

View shared research outputs
Top Co-Authors

Avatar

James E. Hall

University of California

View shared research outputs
Top Co-Authors

Avatar

Katalin Kalman

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge