Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jayaveeramuthu Nirmala is active.

Publication


Featured researches published by Jayaveeramuthu Nirmala.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains.

Robert Brueggeman; Arnis Druka; Jayaveeramuthu Nirmala; T. Cavileer; Tom Drader; Nils Rostoks; Aghafakhr Mirlohi; H. Bennypaul; Upinder Gill; David Kudrna; C. Whitelaw; A. Kilian; F. Han; Y. Sun; Kulvinder S. Gill; Brian J. Steffenson; Andris Kleinhofs

We isolated the barley stem rust resistance genes Rpg5 and rpg4 by map-based cloning. These genes are colocalized on a 70-kb genomic region that was delimited by recombination. The Rpg5 gene consists of an unusual structure encoding three typical plant disease resistance protein domains: nucleotide-binding site, leucine-rich repeat, and serine threonine protein kinase. The predicted RPG5 protein has two putative transmembrane sites possibly involved in membrane binding. The gene is expressed at low but detectable levels. Posttranscriptional gene silencing using VIGS resulted in a compatible reaction with a normally incompatible stem rust pathogen. Allele sequencing also validated the candidate Rpg5 gene. Allele and recombinant sequencing suggested that the probable rpg4 gene encoded an actin depolymerizing factor-like protein. Involvement of actin depolymerizing factor genes in nonhost resistance has been documented, but discovery of their role in gene-for-gene interaction would be novel and needs to be further substantiated.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance

Jayaveeramuthu Nirmala; Tom Drader; Paulraj K. Lawrence; Chuntao Yin; Scot H. Hulbert; Camille M. Steber; Brian J. Steffenson; Les J. Szabo; Diter von Wettstein; Andris Kleinhofs

The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inoculation, followed by hyphae and haustorium formation. The RPG1 protein is constitutively expressed and not phosphorylated. On inoculation with avirulent urediniospores, it is phosphorylated in vivo within 5 min and subsequently degraded. Application of arginine-glycine-aspartic acid peptide loops prevented the formation of adhesion structures for spore attachment, the phosphorylation of RPG1, and germination of the viable spores. Arginine-glycine-aspartic acid affinity chromatography of proteins from the ungerminated avirulent rust spores led to the purification and identification of a protein with fibronectin type III and breast cancer type 1 susceptibility protein domains and a vacuolar protein sorting-associated protein 9 with a coupling of ubiquitin to endoplasmic reticulum degradation domain. Both proteins are required to induce in vivo phosphorylation and degradation of RPG1. Combined application of both proteins caused hypersensitive reaction on the stem rust-resistant cultivar Morex but not on the susceptible cultivar Steptoe. Expression studies indicated that mRNA of both genes are present in ungerminated urediniospores and are constitutively transcribed in sporelings, infected leaves, and haustoria in the investigated avirulent races. Evidence is presented that RPG1, in yeast, interacts with the two protein effectors from the urediniospores that activate cooperatively the stem rust resistance protein RPG1 long before haustoria formation.


Theoretical and Applied Genetics | 2014

Characterization of Sr9h, a wheat stem rust resistance allele effective to Ug99.

Matthew N. Rouse; Jayaveeramuthu Nirmala; Yue Jin; Shiaoman Chao; Thomas Fetch; Z. A. Pretorius; Colin W. Hiebert

AbstractKey messageWheat stem rust resistance geneSrWebis an allele at theSr9locus that confers resistance to Ug99.Abstract Race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal fungus of stem rust, threatens global wheat production because of its broad virulence to current wheat cultivars. A recently identified Ug99 resistance gene from cultivar Webster, temporarily designated as SrWeb, mapped near the stem rust resistance gene locus Sr9. We determined that SrWeb is also present in Ug99 resistant cultivar Gabo 56 by comparative mapping and an allelism test. Analysis of resistance in a population segregating for both Sr9e and SrWeb demonstrated that SrWeb is an allele at the Sr9 locus, which subsequently was designated as Sr9h. Webster and Gabo 56 were susceptible to the Ug99-related race TTKSF+ from South Africa. Race TTKSF+ possesses unique virulence to uncharacterized Ug99 resistance in cultivar Matlabas. This result validated that resistance to Ug99 in Webster and Gabo 56 is conferred by the same gene: Sr9h. The emergence of pathogen virulence to several resistance genes that are effective to the original Ug99 race TTKSK, including Sr9h, suggests that resistance genes should be used in combinations in order to increase resistance durability.


Molecular Plant-microbe Interactions | 2010

Stem Rust Spores Elicit Rapid RPG1 Phosphorylation

Jayaveeramuthu Nirmala; Tom Drader; Xianming Chen; Brian J. Steffenson; Andris Kleinhofs

Stem rust threatens cereal production worldwide. Understanding the mechanism by which durable resistance genes, such as Rpg1, function is critical. We show that the RPG1 protein is phosphorylated within 5 min by exposure to spores from avirulent but not virulent races of stem rust. Transgenic mutants encoding an RPG1 protein with an in vitro inactive kinase domain fail to phosphorylate RPG1 in vivo and are susceptible to stem rust, demonstrating that phosphorylation is a prerequisite for disease resistance. Protein kinase inhibitors prevent RPG1 phosphorylation and result in susceptibility to stem rust, providing further evidence for the importance of phosphorylation in disease resistance. We conclude that phosphorylation of the RPG1 protein by the kinase activity of the pK2 domain induced by the interaction with an unknown pathogen spore product is required for resistance to the avirulent stem rust races. The pseudokinase pK1 domain is required for disease resistance but not phosphorylation. The very rapid phosphorylation of RPG1 suggests that an effector is already present in or on the stem rust urediniospores when they are placed on the leaf surface. However, spores must be alive, as determined by their ability to germinate, in order to elicit RPG1 phosphorylation.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Proteolysis of the barley receptor-like protein kinase RPG1 by a proteasome pathway is correlated with Rpg1-mediated stem rust resistance

Jayaveeramuthu Nirmala; Stephanie K. Dahl; Brian J. Steffenson; C. Gamini Kannangara; Diter von Wettstein; Xianming Chen; Andris Kleinhofs

In plants, disease resistance mediated by the gene-for-gene mechanism involves the recognition of specific effector molecules produced by the pathogen either directly or indirectly by the resistance-gene products. This recognition triggers a series of signals, thereby serving as a molecular switch in regulating defense mechanisms by the plants. To understand the mechanism of action of the barley stem rust resistance gene Rpg1, we investigated the fate of the RPG1 protein in response to infection with the stem rust fungus, Puccinia graminis f. sp. tritici. The investigations revealed that RPG1 disappears to undetectable limits only in the infected tissues in response to avirulent, but not virulent pathotypes. The RPG1 protein disappearance is rapid and appears to be due to specific protein degradation via the proteasome-mediated pathway as indicated by inhibition with the proteasomal inhibitor MG132, but not by other protease inhibitors.


The Plant Genome | 2009

Barley Stem Rust Resistance Genes: Structure and Function

Andris Kleinhofs; Robert Brueggeman; Jayaveeramuthu Nirmala; Ling Zhang; Aghafakhr Mirlohi; Arnis Druka; Nils Rostoks; Brian J. Steffenson

Rusts are biotrophic pathogens that attack many plant species but are particularly destructive on cereal crops. The stem rusts (caused by Puccinia graminis) have historically caused severe crop losses and continue to threaten production today. Barley (Hordeum vulgare L.) breeders have controlled major stem rust epidemics since the 1940s with a single durable resistance gene Rpg1. As new epidemics have threatened, additional resistance genes were identified to counter new rust races, such as the rpg4/Rpg5 complex locus against races QCCJ and TTKSK. To understand how these genes work, we initiated research to clone and characterize them. The Rpg1 gene encodes a unique protein kinase with dual kinase domains, an active kinase, and a pseudokinase. Function of both domains is essential to confer resistance. The rpg4 and Rpg5 genes are closely linked and function coordinately to confer resistance to several wheat (Triticum aestivum L.) stem rust races, including the race TTKSK (also called Ug99) that threatens the worlds barley and wheat crops. The Rpg5 gene encodes typical resistance gene domains NBS, LRR, and protein kinase but is unique in that all three domains reside in a single gene, a previously unknown structure among plant disease resistance genes. The rpg4 gene encodes an actin depolymerizing factor that functions in cytoskeleton rearrangement.


Phytopathology | 2008

Allele Sequencing of the Barley Stem Rust Resistance Gene Rpg1 Identifies Regions Relevant to Disease Resistance

Aghafakhr Mirlohi; Robert Brueggeman; Tom Drader; Jayaveeramuthu Nirmala; Brian J. Steffenson; Andris Kleinhofs

The stem rust resistance gene Rpg1 has protected North American barley cultivars from significant yield losses for over 65 years. The remarkable durability of this gene warrants further study as to its possible origin and allelic variation. Eight Swiss barley (Hordeum vulgare) landraces and eight wild barley (H. vulgare subsp. spontaneum) accessions from diverse geographic regions were analyzed to uncover new alleles of Rpg1 and learn about its possible origin. The two germplasm groups included accessions that were resistant and susceptible to Puccinia graminis f. sp. tritici pathotype MCCF. Allele-specific primers were utilized to amplify 1 kbp overlapping fragments spanning the Rpg1 gene and sequenced if a polymerase chain reaction (PCR) fragment was generated. Variation among the PCR products revealed significant polymorphisms among these Hordeum accessions. Landraces and wild barley accessions susceptible to pathotype MCCF exhibited the highest degree of Rpg1 polymorphism. One resistant landrace (Hv672) and one resistant wild barley accession (WBDC040) yielded all seven Rpg1-specific PCR fragments, but only landrace Hv672 coded for an apparently functional Rpg1 as determined by comparison to previously characterized resistant and susceptible alleles and also resistance to HKHJ, a stem rust pathotype that can specifically detect Rpg1 in the presence of other resistance genes. Accessions resistant to stem rust pathotype MCCF, but completely lacking Rpg1-specific PCR amplification and hybridization with an Rpg1-specific probe, suggested the presence of stem rust resistant gene(s) different from Rpg1 in the Hordeum germplasm pool. Some Rpg1 alleles that retained the ability to autophosphorylate did not confer resistance to Puccinia graminis f. sp. tritici pathotype MCCF, confirming our previous observations that autophosphorylation is essential, but not sufficient for disease resistance. Thus, the RPG1 protein plays a complex role in the stem rust disease resistance-signaling pathway.


Theoretical and Applied Genetics | 2016

A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat.

Mahbubjon Rahmatov; Matthew N. Rouse; Jayaveeramuthu Nirmala; Tatiana V. Danilova; Bernd Friebe; Brian J. Steffenson; Eva Johansson

Key messageA new stem rust resistance geneSr59fromSecale cerealewas introgressed into wheat as a 2DS·2RL Robertsonian translocation.AbstractEmerging new races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici), from Africa threaten global wheat (Triticum aestivum L.) production. To broaden the resistance spectrum of wheat to these widely virulent African races, additional resistance genes must be identified from all possible gene pools. From the screening of a collection of wheat–rye (Secale cereale L.) chromosome substitution lines developed at the Swedish University of Agricultural Sciences, we described the line ‘SLU238’ 2R (2D) as possessing resistance to many races of P. graminis f. sp. tritici, including the widely virulent race TTKSK (isolate synonym Ug99) from Africa. The breakage-fusion mechanism of univalent chromosomes was used to produce a new Robertsonian translocation: T2DS·2RL. Molecular marker analysis and stem rust seedling assays at multiple generations confirmed that the stem rust resistance from ‘SLU238’ is present on the rye chromosome arm 2RL. Line TA5094 (#101) was derived from ‘SLU238’ and was found to be homozygous for the T2DS·2RL translocation. The stem rust resistance gene on chromosome 2RL arm was designated as Sr59. Although introgressions of rye chromosome arms into wheat have most often been facilitated by irradiation, this study highlights the utility of the breakage-fusion mechanism for rye chromatin introgression. Sr59 provides an additional asset for wheat improvement to mitigate yield losses caused by stem rust.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group

Wenjun Zhang; Shisheng Chen; Zewdie Abate; Jayaveeramuthu Nirmala; Matthew N. Rouse; Jorge Dubcovsky

Significance Wheat provides a substantial proportion of the calories and proteins consumed by humans, but further production increases are necessary to feed a growing human population. Reducing yield losses caused by pathogens can contribute to these increases. In this study, we report the identification of Sr13, a gene from pasta wheat that confers resistance to the new virulent races of the stem rust pathogen that appeared in Africa at the beginning of this century. We identified three different resistance forms of Sr13 and developed a diagnostic marker to accelerate their deployment in wheat breeding programs. In addition, Sr13 can be a useful component of transgenic cassettes including multiple resistance genes. The Puccinia graminis f. sp. tritici (Pgt) Ug99 race group is virulent to most stem rust resistance genes currently deployed in wheat and poses a threat to global wheat production. The durum wheat (Triticum turgidum ssp. durum) gene Sr13 confers resistance to Ug99 and other virulent races, and is more effective at high temperatures. Using map-based cloning, we delimited a candidate region including two linked genes encoding coiled-coil nucleotide-binding leucine-rich repeat proteins designated CNL3 and CNL13. Three independent truncation mutations identified in each of these genes demonstrated that only CNL13 was required for Ug99 resistance. Transformation of an 8-kb genomic sequence including CNL13 into the susceptible wheat variety Fielder was sufficient to confer resistance to Ug99, confirming that CNL13 is Sr13. CNL13 transcripts were slightly down-regulated 2–6 days after Pgt inoculation and were not affected by temperature. By contrast, six pathogenesis-related (PR) genes were up-regulated at high temperatures only when both Sr13 and Pgt were present, suggesting that they may contribute to the high temperature resistance mechanism. We identified three Sr13-resistant haplotypes, which were present in one-third of cultivated emmer and durum wheats but absent in most tested common wheats (Triticum aestivum). These results suggest that Sr13 can be used to improve Ug99 resistance in a large proportion of modern wheat cultivars. To accelerate its deployment, we developed a diagnostic marker for Sr13. The identification of Sr13 expands the number of Pgt-resistance genes that can be incorporated into multigene transgenic cassettes to control this devastating disease.


G3: Genes, Genomes, Genetics | 2017

Discovery of a Novel Stem Rust Resistance Allele in Durum Wheat that Exhibits Differential Reactions to Ug99 Isolates

Jayaveeramuthu Nirmala; Jyoti Saini; Maria Newcomb; Pablo Olivera; Sam Gale; Daryl L. Klindworth; E. M. Elias; L. E. Talbert; Shiaoman Chao; Justin D. Faris; Steven S. Xu; Yue Jin; Matthew N. Rouse

Wheat stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn, can incur yield losses in susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Although several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effective against emerging virulent races have not been described. Durum line 8155-B1 confers resistance against the P. graminis f. sp. tritici race TTKST, the variant race of the Ug99 race group with additional virulence to wheat stem rust resistance gene Sr24. However, 8155-B1 does not confer resistance to the first-described race in the Ug99 race group: TTKSK. We mapped a single gene conferring resistance in 8155-B1 against race TTKST, Sr8155B1, to chromosome arm 6AS by utilizing Rusty/8155-B1 and Rusty*2/8155-B1 populations and the 90K Infinium iSelect Custom bead chip supplemented by KASP assays. One marker, KASP_6AS_IWB10558, cosegregated with Sr8155B1 in both populations and correctly predicted Sr8155B1 presence or absence in 11 durum cultivars tested. We confirmed the presence of Sr8155B1 in cultivar Mountrail by mapping in the population Choteau/Mountrail. The marker developed in this study could be used to predict the presence of resistance to race TTKST in uncharacterized durum breeding lines, and also to combine Sr8155B1 with resistance genes effective to Ug99 such as Sr13. The map location of Sr8155B1 cannot rule out the possibility that this gene is an allele at the Sr8 locus. However, race specificity indicates that Sr8155B1 is different from the known alleles Sr8a and Sr8b.

Collaboration


Dive into the Jayaveeramuthu Nirmala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andris Kleinhofs

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Drader

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Robert Brueggeman

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Shiaoman Chao

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Yue Jin

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. E. Talbert

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge