Jayoung Choi
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jayoung Choi.
Immunological Reviews | 2011
Thomas A. Ferguson; Jayoung Choi; Douglas R. Green
Summary: Immune responses during infection, injury, and cancer proceed in the presence of tissue injury and cell death. Consequently, the system must deal with its own dead cells while it determines the appropriate response to the invader. As apoptotic cells are known to induce immune tolerance and necrotic cells can be potent stimulators of immunity, this decision becomes more complex. The key to understanding the immunologic choices made during cell death is to examine the mechanisms of tolerance induction by dying cells and then relate them to the mechanisms of immunity. Ideally, immunogenic cell death should be directed toward tumor cells and infected cells, whereas tolerogenic cell death should be associated with preventing unwanted immune responses to self. In this review, we discuss how the decision is made by focusing on the biochemical process of cell death and how its key components can influence both tolerance and immunity.
Development | 2011
Jayoung Choi; Kevin Mouillesseaux; Zhiming Wang; Hannah D. G. Fiji; Sape S. Kinderman; Georg W. Otto; Robert Geisler; Ohyun Kwon; Jau-Nian Chen
Arterial and venous endothelial cells exhibit distinct molecular characteristics at early developmental stages. These lineage-specific molecular programs are instructive to the development of distinct vascular architectures and physiological conditions of arteries and veins, but their roles in angiogenesis remain unexplored. Here, we show that the caudal vein plexus in zebrafish forms by endothelial cell sprouting, migration and anastomosis, providing a venous-specific angiogenesis model. Using this model, we have identified a novel compound, aplexone, which effectively suppresses venous, but not arterial, angiogenesis. Multiple lines of evidence indicate that aplexone differentially regulates arteriovenous angiogenesis by targeting the HMG-CoA reductase (HMGCR) pathway. Treatment with aplexone affects the transcription of enzymes in the HMGCR pathway and reduces cellular cholesterol levels. Injecting mevalonate, a metabolic product of HMGCR, reverses the inhibitory effect of aplexone on venous angiogenesis. In addition, aplexone treatment inhibits protein prenylation and blocking the activity of geranylgeranyl transferase induces a venous angiogenesis phenotype resembling that observed in aplexone-treated embryos. Furthermore, endothelial cells of venous origin have higher levels of proteins requiring geranylgeranylation than arterial endothelial cells and inhibiting the activity of Rac or Rho kinase effectively reduces the migration of venous, but not arterial, endothelial cells. Taken together, our findings indicate that angiogenesis is differentially regulated by the HMGCR pathway via an arteriovenous-dependent requirement for protein prenylation in zebrafish and human endothelial cells.
Development | 2007
Xiaodong Shu; Jie Huang; Yuan Dong; Jayoung Choi; Adam Langenbacher; Jau-Nian Chen
A conserved molecular cascade involving Nodal signaling that patterns the laterality of the lateral mesoderm in vertebrates has been extensively studied, but processes involved in the initial break of left-right (LR) symmetry are just beginning to be explored. Here we report that Na,K-ATPaseα 2 and Ncx4a function upstream of Nodal signaling to regulate LR patterning in zebrafish. Knocking down Na,K-ATPase α2 and Ncx4a activity in dorsal forerunner cells (DFCs), which are precursors of Kupffers vesicle (KV), is sufficient to disrupt asymmetric gene expression in the lateral plate mesoderm and randomize the placement of internal organs, indicating that the activity of Na,K-ATPase α2 and Ncx4a in DFCs/KV is crucial for LR patterning. High-speed videomicroscopy and bead implantation experiments show that KV cilia are immobile and the directional fluid flow in KV is abolished in Na,K-ATPase α2 and Ncx4a morphants, suggesting their essential role in KV ciliary function. Furthermore, we found that intracellular Ca2+ levels are elevated in Na,K-ATPase α2 and Ncx4a morphants and that the defects in ciliary motility, KV fluid flow and placement of internal organs induced by their knockdown could be suppressed by inhibiting the activity of Ca2+/calmodulin-dependent protein kinase II. Together, our data demonstrate that Na,K-ATPase α2 and Ncx4a regulate LR patterning by modulating intracellular calcium levels in KV and by influencing cilia function, revealing a previously unrecognized role for calcium signaling in LR patterning.
Biotechnology and Bioengineering | 2000
Yoon Sung Nam; Soon Ho Song; Jayoung Choi; Tae Gwan Park
Lysozyme was encapsulated within biodegradable poly(D, L-lactide-co-glycolide) microspheres by a double emulsion solvent evaporation method for studying its release mechanism associated with protein stability problems. When urea, a protein unfolding agent, was added into the incubation medium lysozyme release rate from the microspheres increased with the increase in urea concentration. The enhanced lysozyme release was attributed to the suppression of protein aggregation, to the facilitated diffusion of unfolded lysozyme by an efficient reptile motion of unfolded protein molecules through porous channels in microspheres, and to the largely decreased extent of nonspecific protein adsorption onto the enlarged surface area of degrading polymer microspheres in the presence of urea. Encapsulating lysozyme in an unfolded form within PLGA microspheres was attempted by using urea as an excipient. This new urea-based formulation exhibited a more sustained lysozyme release profile than the control formulation, and released lysozyme from the microspheres showed a much less amount of lysozyme dimer population while maintaining a correct conformation after refolding in the incubation medium. This study provides new insights for the formulation of protein encapsulated PLGA microspheres.
Autophagy | 2016
Sungwoo Park; Jayoung Choi; Scott B. Biering; Erin Dominici; Lelia E. Williams; Seungmin Hwang
ABSTRACT LC3 has been used as a marker to locate autophagosomes. However, it is also well established that LC3 can localize on various membranous structures other than autophagosomes. We recently demonstrated that the LC3 conjugation system (ATG7, ATG3, and ATG12–ATG5-ATG16L1) is required to target LC3 and IFNG (interferon, gamma)-inducible GTPases to the parasitophorus vacuole membrane (PVM) of a protist parasite Toxoplasma gondii and consequently for IFNG to control T. gondii infection. Here we show that not only LC3, but also its homologs (GABARAP, GABARAPL1, and GABARAPL2) localize on the PVM of T. gondii in a conjugation-dependent manner. Knockout/knockdown of all LC3 homologs led to a significant reduction in targeting of the IFNG-inducible GTPases to the PVM of T. gondii and the IFNG-mediated control of T. gondii infection. Furthermore, when we relocated the ATG12–ATG5-ATG16L1 complex, which specifies the conjugation site of LC3 homologs, to alternative target membranes, the IFNG-inducible GTPases were targeted to the new target membranes rather than the PVM of T. gondii. These data suggest that the localization of LC3 homologs onto a membrane by the LC3 conjugation system is necessary and sufficient for targeting of the IFNG-inducible GTPases to the membrane, implying Targeting by AutophaGy proteins (TAG). Our data further suggest that the conjugation of ubiquitin-like LC3 homologs to the phospholipids of membranes may change the destiny of the membranes beyond degradation through lysosomal fusion, as the conjugation of ubiquitin to proteins changes the destiny of the proteins beyond proteasomal degradation.
Journal of Biological Chemistry | 2014
Philippe M. LeBlanc; Teresa A. Doggett; Jayoung Choi; Mark A. Hancock; Yves Durocher; Filipp Frank; Bhushan Nagar; Thomas A. Ferguson; Maya Saleh
Background: The role of caspase-1 in regulating the immunogenic properties of HMGB1 has not been previously reported. Results: We have mapped a peptide in the A-box of HMGB1 that reverses tolerance through RAGE. Conclusion: Inflammasome signaling regulates the immunogenic activity of HMGB1. Significance: Immunogenic peptides within the HMGB1 A-box may be exploited to reverse immune tolerance in sepsis patients. Apoptotic cells trigger immune tolerance in engulfing phagocytes. This poorly understood process is believed to contribute to the severe immunosuppression and increased susceptibility to nosocomial infections observed in critically ill sepsis patients. Extracellular high mobility group box 1 (HMGB1) is an important mediator of both sepsis lethality and the induction of immune tolerance by apoptotic cells. We have found that HMGB1 is sensitive to processing by caspase-1, resulting in the production of a fragment within its N-terminal DNA-binding domain (the A-box) that signals through the receptor for advanced glycation end products (RAGE) to reverse apoptosis-induced tolerance. In a two-hit mouse model of sepsis, we show that tolerance to a secondary infection and its associated mortality were effectively reversed by active immunization with dendritic cells treated with HMGB1 or the A-box fragment, but not a noncleavable form of HMGB1. These findings represent a novel link between caspase-1 and HMGB1, with potential therapeutic implications in infectious and inflammatory diseases.
Cell Host & Microbe | 2017
Scott B. Biering; Jayoung Choi; Rachel A. Halstrom; Hailey M. Brown; Wandy L. Beatty; Sanghyun Lee; Broc T. McCune; Erin Dominici; Lelia E. Williams; Robert C. Orchard; Craig B. Wilen; Masahiro Yamamoto; Jörn Coers; Gregory A. Taylor; Seungmin Hwang
All viruses with positive-sense RNA genomes replicate on membranous structures in the cytoplasm called replication complexes (RCs). RCs provide an advantageous microenvironment for viral replication, but it is unknown how the host immune system counteracts these structures. Here we show that interferon-gamma (IFNG) disrupts the RC of murine norovirus (MNV) via evolutionarily conserved autophagy proteins and the induction of IFN-inducible GTPases, which are known to destroy the membrane of vacuoles containing bacteria, protists, or fungi. The MNV RC was marked by the microtubule-associated-protein-1-light-chain-3 (LC3) conjugation system of autophagy and then targeted by immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs) upon their induction by IFNG. Further, the LC3 conjugation system and the IFN-inducible GTPases were necessary to inhibit MNV replication in mice and human cells. These data suggest that viral RCs can be marked and antagonized by a universal immune defense mechanism targeting diverse pathogens replicating in cytosolic membrane structures.
Journal of Virology | 2015
Surender Vashist; Luis Urena; Mariam B. Gonzalez-Hernandez; Jayoung Choi; Alexis de Rougemont; Joana Rocha-Pereira; Johan Neyts; Seungmin Hwang; Christiane E. Wobus; Ian Goodfellow
ABSTRACT Human noroviruses (HuNoV) are a significant cause of acute gastroenteritis in the developed world, and yet our understanding of the molecular pathways involved in norovirus replication and pathogenesis has been limited by the inability to efficiently culture these viruses in the laboratory. Using the murine norovirus (MNV) model, we have recently identified a network of host factors that interact with the 5′ and 3′ extremities of the norovirus RNA genome. In addition to a number of well-known cellular RNA binding proteins, the molecular chaperone Hsp90 was identified as a component of the ribonucleoprotein complex. Here, we show that the inhibition of Hsp90 activity negatively impacts norovirus replication in cell culture. Small-molecule-mediated inhibition of Hsp90 activity using 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) revealed that Hsp90 plays a pleiotropic role in the norovirus life cycle but that the stability of the viral capsid protein is integrally linked to Hsp90 activity. Furthermore, we demonstrate that both the MNV-1 and the HuNoV capsid proteins require Hsp90 activity for their stability and that targeting Hsp90 in vivo can significantly reduce virus replication. In summary, we demonstrate that targeting cellular proteostasis can inhibit norovirus replication, identifying a potential novel therapeutic target for the treatment of norovirus infections. IMPORTANCE HuNoV are a major cause of acute gastroenteritis around the world. RNA viruses, including noroviruses, rely heavily on host cell proteins and pathways for all aspects of their life cycle. Here, we identify one such protein, the molecular chaperone Hsp90, as an important factor required during the norovirus life cycle. We demonstrate that both murine and human noroviruses require the activity of Hsp90 for the stability of their capsid proteins. Furthermore, we demonstrate that targeting Hsp90 activity in vivo using small molecule inhibitors also reduces infectious virus production. Given the considerable interest in the development of Hsp90 inhibitors for use in cancer therapeutics, we identify here a new target that could be explored for the development of antiviral strategies to control norovirus outbreaks and treat chronic norovirus infection in immunosuppressed patients.
Biotechnology and Bioengineering | 2001
Min Tae Park; Myung Seop Lee; Jayoung Choi; Sun Chang Kim; Gyun Min Lee
Endoxylanase, for which the optimum temperature is 60 degrees C (optimum pH 7), is labile to heat. Because the isoelectric point (pI) value of this xylanase is 10.6, the net charge of this enzyme is positive at pH 7. Thus, ions are likely to influence its enzyme structure and the thermal stability of endoxylanase may improve. Among the various ions tested, orthophosphate anion (HPO(4)(2-)) was found to significantly improve not only the stability but the activity of xylanase. When K(2)HPO(4) concentration was increased from 50 mM to 1.2 M, the T(m )value of xylanase was increased from 60.0 degrees C to 74.5 degrees C. The affinity of xylanase on xylan also increased along with K(2)HPO(4) concentration. Thus, the xylanase activity at 0.6 M K(2)HPO(4) was 2.3-fold higher than that at 50 mM K(2)HPO(4), and 120.2-fold higher than that in 40 mM MOPS buffer. This enhanced activity in the presence of K(2)HPO(4 )probably takes place because the orthophosphate anion affects the binding and catalytic residues of endoxylanase.
Small GTPases | 2017
Jayoung Choi; Scott B. Biering; Seungmin Hwang
ABSTRACT Many intracellular pathogens survive and replicate within vacuole-like structures in the cytoplasm. It has been unclear how the host immune system controls such pathogen-containing vacuoles. Interferon-inducible GTPases are dynamin-like GTPases that target the membranes of pathogen-containing vacuoles. Upon their oligomerization on the membrane, the vacuole structure disintegrates and the pathogen gets exposed to the hostile cytoplasm. What has been obscure is how the immune system detects and directs the GTPases to these pathogen shelters. Using a common protist parasite of mice, Toxoplasma gondii, we found that the LC3 conjugation system of autophagy is necessary and sufficient for targeting the interferon-inducible GTPases to membranes. We dubbed this process Targeting by AutophaGy proteins (TAG). In canonical autophagy, the LC3 conjugation system is required to form membrane-bound autophagosomes, which encircle and deliver cytosolic materials to lysosomes for degradation. In TAG, however, the conjugation system is required to mark the membranes of pathogen-containing vacuoles with ubiquitin-like LC3 homologs, which function as molecular beacons to recruit the GTPases to their target membranes. Our data suggest that the LC3 conjugation system of autophagy plays an essential role in detecting and marking pathogen-containing vacuoles for immune effector targeting by the host immune system.