Jau-Nian Chen
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jau-Nian Chen.
Development | 2005
Suk-Won Jin; Dimitris Beis; Tracy Mitchell; Jau-Nian Chen; Didier Y. R. Stainier
Tube and lumen formation are essential steps in forming a functional vasculature. Despite their significance, our understanding of these processes remains limited, especially at the cellular and molecular levels. In this study, we analyze mechanisms of angioblast coalescence in the zebrafish embryonic midline and subsequent vascular tube formation. To facilitate these studies, we generated a transgenic line where EGFP expression is controlled by the zebrafish flk1 promoter. We find that angioblasts migrate as individual cells to form a vascular cord at the midline. This transient structure is stabilized by endothelial cell-cell junctions, and subsequently undergoes lumen formation to form a fully patent vessel. Downregulating the VEGF signaling pathway, while affecting the number of angioblasts, does not appear to affect their migratory behavior. Our studies also indicate that the endoderm, a tissue previously implicated in vascular development, provides a substratum for endothelial cell migration and is involved in regulating the timing of this process, but that it is not essential for the direction of migration. In addition, the endothelial cells in endodermless embryos form properly lumenized vessels, contrary to what has been previously reported in Xenopus and avian embryos. These studies provide the tools and a cellular framework for the investigation of mutations affecting vasculogenesis in zebrafish.
Development | 2005
Dimitris Beis; Thomas Bartman; Suk-Won Jin; Ian C. Scott; Leonard A. D'Amico; Elke A. Ober; Heather Verkade; Julie Frantsve; Holly A. Field; Ann M. Wehman; Herwig Baier; Alexandra Tallafuss; Laure Bally-Cuif; Jau-Nian Chen; Didier Y. R. Stainier
Defects in cardiac valve morphogenesis and septation of the heart chambers constitute some of the most common human congenital abnormalities. Some of these defects originate from errors in atrioventricular (AV) endocardial cushion development. Although this process is being extensively studied in mouse and chick, the zebrafish system presents several advantages over these models, including the ability to carry out forward genetic screens and study vertebrate gene function at the single cell level. In this paper, we analyze the cellular and subcellular architecture of the zebrafish heart during stages of AV cushion and valve development and gain an unprecedented level of resolution into this process. We find that endocardial cells in the AV canal differentiate morphologically before the onset of epithelial to mesenchymal transformation, thereby defining a previously unappreciated step during AV valve formation. We use a combination of novel transgenic lines and fluorescent immunohistochemistry to analyze further the role of various genetic (Notch and Calcineurin signaling) and epigenetic (heart function) pathways in this process. In addition, from a large-scale forward genetic screen we identified 55 mutants, defining 48 different genes, that exhibit defects in discrete stages of AV cushion development. This collection of mutants provides a unique set of tools to further our understanding of the genetic basis of cell behavior and differentiation during AV valve development.
Current Biology | 2003
John D. Mably; C. Geoffrey Burns; Jau-Nian Chen; Mark C. Fishman; Manzoor-Ali P.K. Mohideen
BACKGROUND Patterned growth of vertebrate organs is essential for normal physiological function, but the underlying pathways that govern organotypic growth are not clearly understood. Heart function is critically dependent upon the concentric thickening of the ventricular wall generated by the addition of cells to the myocardium along the axis from the endocardium (inside) to the outside of the chamber. In heart of glass mutant embryos, the number of cells in the myocardium is normal, but they are not added in the concentric direction. As a consequence, the chambers are huge and dysfunctional, and the myocardium remains a single layer. RESULTS To begin to define the factors controlling the concentric growth of cells in the myocardium, we used positional cloning to identify the heart of glass (heg) gene. heg encodes a protein of previously undescribed function, expressed in the endocardial layer of the heart. By alternative splicing, three distinct isoforms are generated, one of which is predicted to be transmembrane and two other secreted. By selective morpholino perturbation, we demonstrate that the transmembrane form is critical for the normal pattern of growth. CONCLUSIONS heart of glass encodes a previously uncharacterized endocardial signal that is vital for patterning concentric growth of the heart. Growth of the heart requires addition of myocardial cells along the endocardial-to-myocardial axis. This axis of patterning is driven by heg, a novel transmembrane protein expressed in the endocardium.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2003
Laura M. Cross; Marisa A. Cook; Shuo Lin; Jau-Nian Chen; Amy L. Rubinstein
To the Editor: Solid tumors require an adequate supply of blood vessels to survive, grow, and metastasize.1–3⇓⇓ New blood vessels that nourish growing tumors form by angiogenesis. Drugs shown to have anti-angiogenic activity are currently in clinical cancer trials.4 To date, anti-angiogenic drugs have had mixed success in clinical application. Many new compounds may need to be tested to identify drugs capable of treating a wide range of tumors. The ideal assay for screening new compounds should involve blood vessels growing in their natural environment, such as a whole living organism, yet be amenable to rapid analysis. No current assays provide such a unique combination. We describe here an assay using the zebrafish ( Danio rerio ) that provides the relevance of an in vivo environment as well as the potential for high throughput drug screening. The zebrafish has become a well accepted model for studies of vertebrate developmental biology. The vascular system has been well described and shown to be highly conserved in the zebrafish.5,6⇓ Many zebrafish blood vessels form by angiogenic sprouting and appear to require the same proteins that are necessary for blood vessel growth in mammals. In addition, anti-angiogenic compounds, such as PTK787/ZK222584 and SU5416, have been shown to affect the formation of zebrafish blood vessels.7,8⇓ Current methods of visualizing blood vessels in the zebrafish include whole mount in situ hybridization,9,10⇓ detection of endogenous alkaline phosphatase activity,8 and microangiography.11 …
Current Biology | 2001
Randall T. Peterson; John D. Mably; Jau-Nian Chen; Mark C. Fishman
BACKGROUND One of the earliest steps in heart formation is the generation of two chambers, as cardiogenic cells deployed in the epithelial sheet of mesoderm converge to form the nascent heart tube. What guides this transformation to organotypic form is not known. RESULTS We have identified a small molecule, concentramide, and a genetic mutation called heart-and-soul (has) that disrupt heart patterning. Both cause the ventricle to form within the atrium. Here, we show that the has gene encodes PKC lambda. The effect of the has mutation is to disrupt epithelial cell-cell interactions in a broad range of tissues. Concentramide does not disrupt epithelial interactions, but rather shifts the converging heart field rostrally. What is shared between the concentramide and has effects is a reversal of the order of fusion of the anterior and posterior ends of the heart field. CONCLUSIONS The polarity of cardiac tube assembly is a critical determinant of chamber orientation and is controlled by at least two distinct molecular pathways. Combined chemical/genetic dissection can identify nodal points in development, of special importance in understanding the complex patterning events of organogenesis.
Nature | 2009
Christopher W. Wilson; Catherine T. Nguyen; Miao-Hsueh Chen; Jehn-Hsiahn Yang; Rhodora Gacayan; Jie Huang; Jau-Nian Chen; Pao-Tien Chuang
Hedgehog (Hh) signalling is essential for several aspects of embryogenesis. In Drosophila, Hh transduction is mediated by a cytoplasmic signalling complex that includes the putative serine-threonine kinase Fused (Fu) and the kinesin Costal 2 (Cos2, also known as Cos), yet Fu does not have a conserved role in Hh signalling in mammals. Mouse Fu (also known as Stk36) mutants are viable and seem to respond normally to Hh signalling. Here we show that mouse Fu is essential for construction of the central pair apparatus of motile, 9+2 cilia and offers a new model of human primary ciliary dyskinesia. We found that mouse Fu physically interacts with Kif27, a mammalian Cos2 orthologue, and linked Fu to known structural components of the central pair apparatus, providing evidence for the first regulatory component involved in central pair construction. We also demonstrated that zebrafish Fu is required both for Hh signalling and cilia biogenesis in Kupffer’s vesicle. Mouse Fu rescued both Hh-dependent and -independent defects in zebrafish. Our results delineate a new pathway for central pair apparatus assembly, identify common regulators of Hh signalling and motile ciliogenesis, and provide insights into the evolution of the Hh cascade.
Development | 2006
John D. Mably; Lesley P. Chuang; Fabrizio C. Serluca; Manzoor-Ali P.K. Mohideen; Jau-Nian Chen; Mark C. Fishman
During embryogenesis, the myocardial layer of the primitive heart tube grows outward from the endocardial-lined lumen, with new cells added to generate concentric thickness to the wall. This is a key evolutionary step, demarcating vertebrates from more primitive chordates, and is essential for normal cardiac function. Zebrafish embryos with the recessive lethal mutations santa (san) and valentine (vtn) do not thicken, but do add the proper number of cells to the myocardium. Consequently, the heart chambers are huge, constituted of a monolayered myocardium lined by endocardium. This phenotype is similar to that of the heart of glass (heg) mutation, which we described previously as a novel endocardial expressed gene. By positional cloning, we here identify san as the zebrafish homolog of human CCM1, and vtn as the homolog of human CCM2. Dominant mutations of either in humans cause vascular anomalies in the brain, known as cerebral cavernous malformations. The synergistic effects of morpholino pairs indicate that san, vtn and heg are in a genetic pathway, and san and vtn contain protein motifs, NPxY and PTB domain, respectively, known to interact. This suggests that concentric growth of the myocardium, crucial for blood pressure generation, is dictated by a heg-san-vtn signaling pathway.
Cell | 2012
Ben Van Handel; Amelie Montel-Hagen; Rajkumar Sasidharan; Haruko Nakano; Roberto Ferrari; Cornelis J. Boogerd; Johann Schredelseker; Yanling Wang; Sean Hunter; Tonis Org; Jian Zhou; Xinmin Li; Matteo Pellegrini; Jau-Nian Chen; Stuart H. Orkin; Siavash K. Kurdistani; Sylvia M. Evans; Atsushi Nakano; Hanna Mikkola
Endothelium in embryonic hematopoietic tissues generates hematopoietic stem/progenitor cells; however, it is unknown how its unique potential is specified. We show that transcription factor Scl/Tal1 is essential for both establishing the hematopoietic transcriptional program in hemogenic endothelium and preventing its misspecification to a cardiomyogenic fate. Scl(-/-) embryos activated a cardiac transcriptional program in yolk sac endothelium, leading to the emergence of CD31+Pdgfrα+ cardiogenic precursors that generated spontaneously beating cardiomyocytes. Ectopic cardiogenesis was also observed in Scl(-/-) hearts, where the disorganized endocardium precociously differentiated into cardiomyocytes. Induction of mosaic deletion of Scl in Scl(fl/fl)Rosa26Cre-ER(T2) embryos revealed a cell-intrinsic, temporal requirement for Scl to prevent cardiomyogenesis from endothelium. Scl(-/-) endothelium also upregulated the expression of Wnt antagonists, which promoted rapid cardiomyocyte differentiation of ectopic cardiogenic cells. These results reveal unexpected plasticity in embryonic endothelium such that loss of a single master regulator can induce ectopic cardiomyogenesis from endothelial cells.
Development | 2003
Xiaodong Shu; Karen Cheng; Neil Patel; Fuhua Chen; Elaine M. Joseph; Huai-Jen Tsai; Jau-Nian Chen
Na,K-ATPase is an essential gene maintaining electrochemical gradients across the plasma membrane. Although previous studies have intensively focused on the role of Na,K-ATPase in regulating cardiac function in the adults, little is known about the requirement for Na,KATPase during embryonic heart development. Here, we report the identification of a zebrafish mutant, heart and mind, which exhibits multiple cardiac defects, including the primitive heart tube extension abnormality, aberrant cardiomyocyte differentiation, and reduced heart rate and contractility. Molecular cloning reveals that the heart and mind lesion resides in the α1B1 isoform of Na,K-ATPase. Blocking Na,K-ATPase α1B1 activity by pharmacological means or by morpholino antisense oligonucleotides phenocopies the patterning and functional defects of heart and mind mutant hearts, suggesting crucial roles for Na,KATPase α1B1 in embryonic zebrafish hearts. In addition to α1B1, the Na,K-ATPase α2 isoform is required for embryonic cardiac patterning. Although the α1B1 andα 2 isoforms share high degrees of similarities in their coding sequences, they have distinct roles in patterning zebrafish hearts. The phenotypes of heart and mind mutants can be rescued by supplementingα 1B1, but not α2, mRNA to the mutant embryos, demonstrating that α1B1 and α2 are not functionally equivalent. Furthermore, instead of interfering with primitive heart tube formation or cardiac chamber differentiation, blocking the translation of Na,KATPaseα 2 isoform leads to cardiac laterality defects.
Nature | 2009
Jessica R. Colantonio; Julien Vermot; David Wu; Adam Langenbacher; Scott E. Fraser; Jau-Nian Chen; Kent L. Hill
In teleosts, proper balance and hearing depend on mechanical sensors in the inner ear. These sensors include actin-based microvilli and microtubule-based cilia that extend from the surface of sensory hair cells and attach to biomineralized ‘ear stones’ (or otoliths). Otolith number, size and placement are under strict developmental control, but the mechanisms that ensure otolith assembly atop specific cells of the sensory epithelium are unclear. Here we demonstrate that cilia motility is required for normal otolith assembly and localization. Using in vivo video microscopy, we show that motile tether cilia at opposite poles of the otic vesicle create fluid vortices that attract otolith precursor particles, thereby biasing an otherwise random distribution to direct localized otolith seeding on tether cilia. Independent knockdown of subunits for the dynein regulatory complex and outer-arm dynein disrupt cilia motility, leading to defective otolith biogenesis. These results demonstrate a requirement for the dynein regulatory complex in vertebrates and show that cilia-driven flow is a key epigenetic factor in controlling otolith biomineralization.