Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jc Vickers is active.

Publication


Featured researches published by Jc Vickers.


Progress in Neurobiology | 2000

The cause of neuronal degeneration in Alzheimer's disease

Jc Vickers; Tracey C. Dickson; Paul A. Adlard; Helen L. Saunders; Carolyn King; Graeme H. McCormack

Alzheimers disease is associated with a specific pattern of pathological changes in the brain that result in neurodegeneration and the progressive development of dementia. Pathological hallmarks common to the disease include beta-amyloid plaques, dystrophic neurites associated with plaques and neurofibrillary tangles within nerve cell bodies. The exact relationship between these pathological features has been elusive, although it is clear that beta-amyloid plaques precede neurofibrillary tangles in neocortical areas. Examination of the brains of individuals in the preclinical stage of the disease have shown that the earliest form of neuronal pathology associated with beta-amyloid plaques resembles the cellular changes that follow structural injury to axons. Thus, the development of beta-amyloid plaques in the brain may cause physical damage to axons, and the abnormally prolonged stimulation of the neuronal response to this kind of injury ultimately results in the profound cytoskeletal alterations that underlie neurofibrillary pathology and neurodegeneration. Therapeutically, inhibition of the neuronal reaction to physical trauma may be a useful neuroprotective strategy in the earliest stages of Alzheimers disease.


Neuroscience | 2001

The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer’s disease

T.C Dickson; Jc Vickers

We have utilised laser confocal microscopy to categorise beta-amyloid plaque types that are associated with preclinical and end-stage Alzheimers disease and to define the neurochemistry of dystrophic neurites associated with various forms of plaques. Plaques with a spherical profile were defined as either diffuse, fibrillar or dense-cored using Thioflavin S staining or immunolabelling for beta-amyloid. Confocal analysis demonstrated that fibrillar plaques had a central mass of beta-amyloid with compact spoke-like extensions leading to a confluent outer rim. Dense-cored plaques had a compacted central mass surrounded by an outer sphere of beta-amyloid. Diffuse plaques lacked a morphologically identifiable substructure, resembling a ball of homogeneous labelling. The relative proportion of diffuse, fibrillar and dense-cored plaques was 53, 22 and 25% in preclinical and 31, 49 and 20% in end-stage Alzheimers disease cases, respectively. Plaque-associated dystrophic neurites in preclinical cases were immunolabeled for neurofilament proteins whereas, in end-stage cases, these abnormal neurites were variably labelled for tau and/or neurofilaments. Double labelling demonstrated that the proportion of diffuse, fibrillar and dense-cored plaques that were neuritic was 12, 47 and 82% and 24, 82 and 76% in preclinical and end-stage cases, respectively. Most dystrophic neurites in Alzheimers disease cases were labelled for either neurofilaments or tau, however, confocal analysis determined that 30% of neurofilament-labelled bulb-like or elongated neurites had a core of tau immunoreactivity. These results indicate that all morphologically defined beta-amyloid plaque variants were present in both early and late stages of Alzheimers disease. However, progression to clinical dementia was associated with both a shift to a higher proportion of fibrillar plaques that induced local neuritic alterations and a transformation of cytoskeletal proteins within associated abnormal neuronal processes. There data indicate key pathological changes that may be subject to therapeutic intervention to slow the progression of Alzheimers disease.


Trends in Neurosciences | 1994

Cellular and synaptic localization of NMDA and non-NMDA receptor subunits in neocortex: organizational features related to cortical circuitry, function and disease

George W. Huntley; Jc Vickers; John H. Morrison

Excitatory amino acid (EAA) receptors are an important component of neocortical circuitry as a result of their role as the principal mediators of excitatory synaptic activity, as well as their involvement in use-dependent modifications of synaptic efficacy, excitoxicity and cell death. The diversity in the effects generated by EAA-receptor activation can be attributed to multiple receptor subtypes, each of which is composed of multimeric assemblies of functionally distinct receptor subunits. The use of subunit-specific antibodies and molecular probes now makes it feasible to localize individual receptor subunits anatomically with a high level of cellular and synaptic resolution. Initial studies of the distribution of immunocytochemically localized EAA-receptor subunits suggest that particular subunit combinations exhibit a differential cellular, laminar and regional distribution in the neocortex. While such patterns might indicate that the functional heterogeneity of EAA-receptor-linked circuits, and the cell types in which they operate, are based partly on differential subunit parcellation, a definitive integration of these anatomical details into current schemes of cortical circuitry and organization awaits many further studies. Ideally, such studies should link a high level of molecular precision regarding subunit localization with synaptic details of identified connections and neurochemical features of neocortical cells.


Journal of Biological Chemistry | 2008

Redefining the role of metallothionein within the injured brain: extracellular metallothioneins play an important role in the astrocyte-neuron response to injury

Roger S. Chung; Milena Penkowa; Justin Dittmann; Carolyn King; Carole A. Bartlett; Johanne W. Asmussen; Juan Hidalgo; Javier Carrasco; Yee Kee J. Leung; Adam K. Walker; Sj Fung; Sarah A. Dunlop; Melinda Fitzgerald; Lyn Beazley; Meng Inn Chuah; Jc Vickers; Ak West

A number of intracellular proteins that are protective after brain injury are classically thought to exert their effect within the expressing cell. The astrocytic metallothioneins (MT) are one example and are thought to act via intracellular free radical scavenging and heavy metal regulation, and in particular zinc. Indeed, we have previously established that astrocytic MTs are required for successful brain healing. Here we provide evidence for a fundamentally different mode of action relying upon intercellular transfer from astrocytes to neurons, which in turn leads to uptake-dependent axonal regeneration. First, we show that MT can be detected within the extracellular fluid of the injured brain, and that cultured astrocytes are capable of actively secreting MT in a regulatable manner. Second, we identify a receptor, megalin, that mediates MT transport into neurons. Third, we directly demonstrate for the first time the transfer of MT from astrocytes to neurons over a specific time course in vitro. Finally, we show that MT is rapidly internalized via the cell bodies of retinal ganglion cells in vivo and is a powerful promoter of axonal regeneration through the inhibitory environment of the completely severed mature optic nerve. Our work suggests that the protective functions of MT in the central nervous system should be widened from a purely astrocytic focus to include extracellular and intra-neuronal roles. This unsuspected action of MT represents a novel paradigm of astrocyte-neuronal interaction after injury and may have implications for the development of MT-based therapeutic agents.


Brain Research | 1995

Differential vulnerability of neurochemically identified subpopulations of retinal neurons in a monkey model of glaucoma

Jc Vickers; Ra Schumer; S.M. Podos; Rong-Fang Wang; Beat M. Riederer; John H. Morrison

The vulnerability of subpopulations of retinal neurons delineated by their content of cytoskeletal or calcium-binding proteins was evaluated in the retinas of cynomolgus monkeys in which glaucoma was produced with an argon laser. We quantitatively compared the number of neurons containing either neurofilament (NF) protein, parvalbumin, calbindin or calretinin immunoreactivity in central and peripheral portions of the nasal and temporal quadrants of the retina from glaucomatous and fellow non-glaucomatous eyes. There was no significant difference between the proportion of amacrine, horizontal and bipolar cells labeled with antibodies to the calcium-binding proteins comparing the two eyes. NF triplet immunoreactivity was present in a subpopulation of retinal ganglion cells, many of which, but not all, likely correspond to large ganglion cells that subserve the magnocellular visual pathway. Loss of NF protein-containing retinal ganglion cells was widespread throughout the central (59-77% loss) and peripheral (96-97%) nasal and temporal quadrants and was associated with the loss of NF-immunoreactive optic nerve fibers in the glaucomatous eyes. Comparison of counts of NF-immunoreactive neurons with total cell loss evaluated by Nissl staining indicated that NF protein-immunoreactive cells represent a large proportion of the cells that degenerate in the glaucomatous eyes, particularly in the peripheral regions of the retina. Such data may be useful in determining the cellular basis for sensitivity to this pathologic process and may also be helpful in the design of diagnostic tests that may be sensitive to the loss of the subset of NF-immunoreactive ganglion cells.


Brain Research | 1992

Progressive transformation of the cytoskeleton associated with normal aging and Alzheimer's disease

Jc Vickers; André Delacourte; John H. Morrison

Transitional and end-stage forms of neurofibrillary tangles associated with normal aging and Alzheimers disease were identified using thioflavine staining combined with tau and neurofilament protein immunofluorescence. Normal aging was marked by transitional pathology in layer II of the entorhinal cortex but no neurofibrillary tangles in prefrontal cortex, whereas, in Alzheimers disease cases, layer II entorhinal neurons had progressed to end-stage neurofibrillary tangles and the prefrontal cortex contained a high representation of transitional forms of the neurofibrillary tangle.


The Journal of Neuroscience | 2003

Cytoskeletal and morphological alterations underlying axonal sprouting after localized transection of cortical neuron axons in vitro

Ja Chuckowree; Jc Vickers

We examined the cytoskeletal dynamics that characterize neurite sprouting after axonal injury to cortical neurons maintained in culture for several weeks and compared these with initial neurite development. Cultured neocortical neurons, derived from embryonic day 18 rats, were examined at 3 d in vitro (DIV) and at various time points after axotomy at 21 DIV. The postinjury neuritic response was highly dynamic, progressing through an initial phase of retraction, followed by substantial axonal sprouting within 4–6 hr. Postinjury sprouts were motile and slender with expanded growth cone-like end structures. Microtubule markers were localized to sprout shafts and the proximal regions of putative growth cones and filamentous actin was distributed throughout growth cones, whereas neurofilament proteins were restricted to sprout shafts. A similar distribution of cytoskeletal proteins was present in developing neurites at 3 DIV. Exposure of developing and mature, injured cultures to the microtubule stabilizing agent taxol (10 μg/ml) caused growth inhibition, process distension, the transformation of growth cones into bulbous structures, and abnormal neurite directionality. Microtubule and neurofilament segregation occurred after taxol exposure in developing neurites and postinjury sprouts. Exposure to the microtubule destabilizing agent nocodazole (100 μg/ml) resulted in substantial morphological alteration of developing neurons and inhibited neurite growth and postinjury axonal sprouting. Our results indicate that the axons of cortical neurons have an intrinsic ability to sprout after transection, and similar cytoskeletal dynamics underlie neurite development and postinjury axonal sprouting.


Experimental Neurology | 2006

Alpha-synuclein is upregulated in neurones in response to chronic oxidative stress and is associated with neuroprotection

Marian C Quilty; Anna E. King; Wei Ping Gai; Dean Louis Pountney; Ak West; Jc Vickers; Tracey C. Dickson

Chronic oxidative stress has been linked to the neurodegenerative changes characteristic of Parkinsons disease, particularly alpha-synuclein accumulation and aggregation. However, it remains contentious whether these alpha-synuclein changes are cytotoxic or neuroprotective. The current study utilised long-term primary neural culture techniques with antioxidant free media to study the cellular response to chronic oxidative stress. Cells maintained in antioxidant free media were exquisitely more vulnerable to acute exposure to hydrogen peroxide, yet exposure of up to 10 days in antioxidant free media did not lead to morphological alterations in neurones or glia. However, a subpopulation of neurones demonstrated a significant increase in the level of alpha-synuclein expressed within the cell body and at synaptic sites. This subset of neurones was also more resistant to apoptotic changes following exposure to antioxidant free media relative to other neurones. These data indicate that increased alpha-synuclein content is associated with neuroprotection from relatively low levels of oxidative stress.


Experimental Neurology | 2004

Olfactory ensheathing cells promote collateral axonal branching in the injured adult rat spinal cord

Mi Chuah; Dl Choi-Lundberg; S Weston; Aj Vincent; Roger S. Chung; Jc Vickers; Ak West

In recent years, injection of olfactory ensheathing cells (ECs) into the spinal cord has been used as an experimental strategy to promote regeneration of injured axons. In this study, we have compared the effects of transplanting encapsulated ECs with those injected directly into the spinal cord. The dorsal columns of adult rats were cut at T(8-9) and rats in experimental groups received either EC-filled porous polymer capsules or culture medium (CM)-filled capsules with ECs injected at the injury site. Control rats were in three groups: (1) uninjured, (2) lesion with transplantation of CM-filled capsules and (3) lesion with transplantation of CM-filled capsules and injections of CM. Three weeks after injury, Fluororuby was injected into the hindlimb motor and somatosensory cortex to label corticospinal neurons. Observations indicated that there were a few regenerating fibres, up to 10, in the EC-treated groups. In rats that received encapsulated ECs, regenerating fibres were present in close association with the capsule. Rats that received EC injections demonstrated a significant increase in the number of collateral branches from the intact ventral corticospinal tract (vCST) compared with the corresponding control, CM-injected group (P=0.003), while a trend for increased collateral branches was observed in rats that received encapsulated ECs (P=0.07).


Cellular and Molecular Life Sciences | 2004

Olfactory ensheathing cells promote neurite sprouting of injured axons in vitro by direct cellular contact and secretion of soluble factors

Roger S. Chung; A Woodhouse; Sj Fung; Tc Dickson; Ak West; Jc Vickers; Mi Chuah

Olfactory ensheathing cells (OECs) represent an exciting possibility for promoting axonal regeneration within the injured spinal cord. A number of studies have indicated the ability of these cells to promote significant reactive sprouting of injured axons within the injured spinal cord, and in some cases restoration of functional abilities. However, the cellular and/or molecular mechanisms OECs use to achieve this are unclear. To investigate such mechanisms, we report for the first time the ability of OECs to promote post-injury neurite sprouting in an in vitro model of axonal injury. Using this model, we were able to differentiate between the direct and indirect mechanisms underlying the ability of OECs to promote neuronal recovery from injury. We noted that OECs appeared to act as a physical substrate for the growth of post-injury neurite sprouts. We also found that while post-injury sprouting was promoted most when OECs were allowed to directly contact injured neurons, physical separation using tissue culture inserts (1 mm pore size, permeable to diffusible factors but not cells) did not completely block the promoting properties of OECs, suggesting that they also secrete soluble factors which aid post-injury neurite sprouting. Furthermore, this in vitro model allowed direct observation of the cellular interactions between OECs and sprouting neurites using live-cell-imaging techniques. In summary, we found that OECs separately promote neurite sprouting by providing a physical substrate for growth and through the expression of soluble factors. Our findings provide new insight into the ability of OECs to promote axonal regeneration, and also indicate potential targets for manipulation of these cells to enhance their restorative ability.

Collaboration


Dive into the Jc Vickers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ak West

Menzies Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mi Chuah

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mj Summers

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Adlard

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge