Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Christophe Copin is active.

Publication


Featured researches published by Jean-Christophe Copin.


Journal of Cerebral Blood Flow and Metabolism | 1999

Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice : A possible role in blood-brain barrier dysfunction

Yvan Gasche; Miki Fujimura; Yuiko Morita-Fujimura; Jean-Christophe Copin; Makoto Kawase; Justin Massengale; Pak H. Chan

During cerebral ischemia blood–brain barrier (BBB) disruption is a critical event leading to vasogenic edema and secondary brain injury. Gelatinases A and B are matrix metalloproteinases (MMP) able to open the BBB. The current study analyzes by zymography the early gelatinases expression and activation during permanent ischemia in mice (n = 15). ProMMP-9 expression was significantly (P < 0.001) increased in ischemic regions compared with corresponding contralateral regions after 2 hours of ischemia (mean 694.7 arbitrary units [AU], SD ± 238.4 versus mean 107.6 AU, SD ± 15.6) and remained elevated until 24 hours (mean 745,7 AU, SD ± 157.4). Moreover, activated MMP-9 was observed 4 hours after the initiation of ischemia. At the same time as the appearance of activated MMP-9, we detected by the Evans blue extravasation method a clear increase of BBB permeability, Tissue inhibitor of metalloproteinase-1 was not modified during permanent ischemia at any time. The ProMMP-2 was significantly (P < 0.05) increased only after 24 hours of permanent ischemia (mean 213.2 AU, SD ± 60.6 versus mean 94.6 AU, SD ± 13.3), and no activated form was observed. The appearance of activated MMP-9 after 4 hours of ischemia in correlation with BBB permeability alterations suggests that MMP-9 may play an active role in early vasogenic edema development after stroke.


Journal of Cerebral Blood Flow and Metabolism | 2001

Matrix Metalloproteinase Inhibition Prevents Oxidative Stress-Associated Blood–Brain Barrier Disruption after Transient Focal Cerebral Ischemia

Yvan Gasche; Jean-Christophe Copin; Taku Sugawara; Miki Fujimura; Pak H. Chan

Oxidative stress generated during stroke is a critical event leading to blood–brain barrier (BBB) disruption with secondary vasogenic edema and hemorrhagic transformation of infarcted brain tissue, restricting the benefit of thrombolytic reperfusion. In this study, the authors demonstrate that ischemia-reperfusion–induced BBB disruption in mice deficient in copper/zinc-superoxide dismutase (SOD1) was reduced by 88% (P < 0.0001) and 73% (P < 0.01), respectively, after 3 and 7 hours of reperfusion occurring after 1 hour of ischemia by the inhibition of matrix metalloproteinases. Accordingly, the authors show that local metalloproteinase-generated proteolytic imbalance is more intense in ischemic regions of SOD1 mice than in wild-type litter mates. Moreover, active in situ proteolysis is, for the first time, demonstrated in ischemic leaking capillaries that produce reactive oxygen species. By showing that oxidative stress mediates BBB disruption through metalloproteinase activation in experimental ischemic stroke, this study provides a new target for future therapeutic strategies to prevent BBB disruption and potentially reperfusion-triggered intracerebral hemorrhage.


The Journal of Neuroscience | 1999

Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice.

Miki Fujimura; Yuiko Morita-Fujimura; Makoto Kawase; Jean-Christophe Copin; Bernard Calagui; Charles J. Epstein; Pak H. Chan

Recent studies have shown that release of mitochondrial cytochrome c is a critical step in the apoptosis process. We have reported that cytosolic redistribution of cytochrome c in vivooccurred after transient focal cerebral ischemia (FCI) in rats and preceded the peak of DNA fragmentation. Although the involvement of reactive oxygen species in the cytosolic redistribution of cytochrome cin vitro has been suggested, the detailed mechanism by which cytochrome c release is mediated in vivo has not yet been established. Also, the role of mitochondrial oxidative stress in cytochrome c release is unknown. These issues can be addressed using knock-out mutants that are deficient in the level of the mitochondrial antioxidant manganese superoxide dismutase (Mn-SOD). In this study we examined the subcellular distribution of the cytochrome c protein in both wild-type mice and heterozygous knock-outs of the Mn-SOD gene (Sod2 −/+) after permanent FCI, in which apoptosis is assumed to participate. Cytosolic cytochrome c was detected as early as 1 hr after ischemia, and correspondingly, mitochondrial cytochrome c showed a significant reduction 2 hr after ischemia (p< 0.01). Cytosolic accumulation of cytochrome c was significantly higher in Sod2 −/+ mice compared with wild-type animals (p < 0.05).N-benzyloxycarbonyl-val-ala-asp-fluoromethyl ketone (z-VAD.FMK), a nonselective caspase inhibitor, did not affect cytochrome c release after ischemia. A significant amount of DNA laddering was detected 24 hr after ischemia and increased in Sod2 −/+ mice. These data suggest that Mn-SOD blocks cytosolic release of cytochrome c and could thereby reduce apoptosis after permanent FCI.


The Journal of Neuroscience | 2003

Neurodegeneration in Striatum Induced by the Mitochondrial Toxin 3-Nitropropionic Acid: Role of Matrix Metalloproteinase-9 in Early Blood-Brain Barrier Disruption?

Gyung Whan Kim; Yvan Gasche; Susanna M. Grzeschik; Jean-Christophe Copin; Carolina M. Maier; Pak H. Chan

Blood-brain barrier (BBB) dysfunction is a potential mechanism involved in progressive striatal damage induced by the mitochondrial excitotoxin, 3-nitropropionic acid (3-NP). After activation by proteases and free radicals, matrix metalloproteinases (MMPs), particularly MMP-9 and -2, can digest the endothelial basal lamina leading to BBB opening. Using CD-1 mice, we show that MMP-9 expression by zymography is increased in the injured striatum compared with the contralateral striatum 2 hr after 3-NP injection [133.50 ± 57.17 vs 50.25 ± 13.56; mean ± SD of optical densities in arbitrary units (A.U.); p < 0.005] and remains elevated until 24 hr (179.33 ± 78.24 A.U.). After 4 hr, MMP-9 expression and activation are accompanied by an increase in BBB permeability. MMP inhibition attenuates BBB disruption, swelling, and lesion volume compared with vehicle-treated controls. There is a clear spatial relationship between MMP-9 expression and oxidized hydroethidine, indicating reactive oxygen species (ROS) production. Furthermore, transgenic mice that overexpress copper/zinc-superoxide dismutase (SOD1) show decreased lesion size and edema along with decreased immunoreactivity for MMP-9, compared with wild-type littermates (lesion: 38.8 ± 15.1 and 53.3 ± 10.3, respectively, p ≤ 0.05; edema: 21.8 ± 11.2 and 35.28 ± 11, respectively, p ≤ 0.05; MMP-9-positive cells: 352 ± 57 and 510 ± 45, respectively, p ≤ 0.005), whereas knock-out mice deficient in SOD1 display significantly greater swelling (48.65 ± 17; p ≤ 0.05). We conclude that early expression and activation of MMP-9 by ROS may be involved in early BBB disruption and progressive striatal damage after 3-NP treatment.


Journal of Cerebral Blood Flow and Metabolism | 2000

Excitotoxicity is Required for Induction of Oxidative Stress and Apoptosis in Mouse Striatum by the Mitochondrial Toxin, 3-Nitropropionic Acid

Gyung Whan Kim; Jean-Christophe Copin; Makoto Kawase; Sylvia F. Chen; Shuzo Sato; Glenn T. Gobbel; Pak H. Chan

Excitotoxicity is implicated in the pathogenesis of several neurologic diseases, such as chronic neurodegenerative diseases and stroke. Recently, it was reported that excitotoxicity has a relationship to apoptotic neuronal death, and that the mitochondrial toxin, 3-nitropropionic acid (3-NP), could induce apoptosis in the striatum. Although striatal lesions produced by 3-NP could develop through an excitotoxic mechanism, the exact relationship between apoptosis induction and excitotoxicity after 3-NP treatment is still not clear. The authors investigated the role of excitotoxicity and oxidative stress on apoptosis induction within the striatum after intraperitoneal injection of 3-NP. The authors demonstrated that removal of the corticostriatal glutamate pathway reduced superoxide production and apoptosis induction in the denervated striatum of decorticated mice after 3-NP treatment. Also, the N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, prevented apoptosis in the striatum after 3-NP treatment for 5 days, whereas the non-NMDA receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline, was ineffective. The authors also evaluated the initial type of neuronal death by 3-NP treatment for different durations from 1 to 5 days. In early striatal damage, apoptotic neuronal death initially occurred after 3-NP treatment. Our data show that excitotoxicity related to oxidative stress initially induces apoptotic neuronal death in mouse striatum after treatment with 3-NP.


Journal of Cerebral Blood Flow and Metabolism | 2000

Overexpression of Copper and Zinc Superoxide Dismutase in Transgenic Mice Prevents the Induction and Activation of Matrix Metalloproteinases after Cold Injury-Induced Brain Trauma

Yuiko Morita-Fujimura; Miki Fujimura; Yvan Gasche; Jean-Christophe Copin; Pak H. Chan

Matrix metalloproteinases (MMPs), a family of proteolytic enzymes which degrade the extracellular matrix, are implicated in blood—brain barrier disruption, which is a critical event leading to vasogenic edema. To investigate the role of reactive oxygen species (ROS) in the expression of MMPs in vasogenic edema, the authors measured gelatinase activities before and after cold injury (CI) using transgenic mice that overexpress superoxide dismutase-1. A marked induction of pro-gelatinase B (pro-MMP-9) was seen 2 hours after CI and was maximized at 12 hours in wild-type mice. The pro-MMP-9 level was significantly lower in transgenic mice 4 hours (P < 0.001) and 12 hours (P < 0.05) after CI compared to wild-type mice. The activated MMP-9 was detected from 6 to 24 hours after injury. A mild induction of pro-gelatinase A (pro-MMP-2) was seen at 6 hours and was sustained until 7 days. In contrast, the activated form of MMP-2 appeared at 24 hours, was maximized at 7 days, and was absent in transgenic mice. Western blot analysis showed that the tissue inhibitors of metalloproteinases were not modified after CI. The results suggest that ROS production after CI may contribute to the induction and/or activation of MMPs and could thereby exacerbate endothelial cell injury and the development of vasogenic edema after injury.


Frontiers in Bioscience | 2006

Matrix metalloproteinases and diseases of the central nervous system with a special emphasis on ischemic brain.

Yvan Gasche; Paola M. Soccal; Michiko Kanemitsu; Jean-Christophe Copin

Matrix metalloproteinases (MMPs) are involved in the pathogenesis of several diseases of the CNS, that share common pathophysiological processes, such as blood-brain barrier (BBB) disruption, oxidative stress, remodeling of the extracellular matrix (ECM) and inflammation. In ischemic brain injury, MMPs are implicated in various stages of the disease. Early after the onset of ischemia, MMPs contribute to the disruption of the BBB leading to vasogenic edema and to the influx of leucocytes into the CNS. The ability of MMPs to digest the basal lamina of capillaries increases the risk of hemorrhagic transformation of the ischemic tissue. During the acute ischemic phase, maintenance of the ECM is essential for neuronal survival. However, ECM degradation and its reconstitution are critical to tissue recovery. MMPs as a key modulator of ECM homeostasis play a role in the cascades leading to neuronal cell death and tissue regeneration. This pleiotropic implication of MMPs in brain injury has open new areas of investigation, which should lead to innovative therapeutic strategies. Yet MMPs may have a detrimental or beneficial role depending on the stage of brain injury. Simple therapeutic strategies based on MMP inhibition have thus little chance to favorably alter prognosis.


Free Radical Biology and Medicine | 2000

Overexpression of copper/zinc superoxide dismutase does not prevent neonatal lethality in mutant mice that lack manganese superoxide dismutase

Jean-Christophe Copin; Yvan Gasche; Pak H. Chan

There are two types of intracellular superoxide dismutases: the mitochondrial manganese SOD (MnSOD) and the cytoplasmic copper/zinc SOD (CuZnSOD). Mutant mice that lack MnSOD die shortly after birth because of cardiomyopathy and mitochondrial injury. In order to verify if CuZnSOD could compensate for MnSOD deficiency, a new mutant mouse that overexpresses CuZnSOD but is deficient in MnSOD was generated by crossing MnSOD knockout mice with CuZnSOD transgenic mice. CuZnSOD activity was significantly increased in the blood, brain, liver, and heart of MnSOD knockout, CuZnSOD transgenic mice when compared with nontransgenic mice. However, overexpression of CuZnSOD did not prevent neonatal lethality in mice that lack MnSOD, nor did it prevent oxidative aconitase inactivation, nor did it rescue MnSOD-deficient astrocytes in culture. Based on our findings, which emphasize the strong enzymatic compartmentalization of CuZnSOD and MnSOD, therapeutic antioxidant strategies should consider the final intracellular localization of the antioxidant used, especially when those strategies are directed against mitochondrial diseases.


Journal of Cerebral Blood Flow and Metabolism | 2001

Oxidative stress-dependent release of Mitochondrial cytochrome c after traumatic brain injury

Anders Lewén; Miki Fujimura; Taku Sugawara; Paul G. Matz; Jean-Christophe Copin; Pak H. Chan

Mitochondrial cytochrome c translocation to the cytosol initiates the mitochondrial-dependent apoptotic pathway. This event has not been previously reported in traumatic brain injury (TBI). The authors determined the expression of cytochrome c in cytosolic and mitochondrial fractions after severe TBI produced by the controlled cortical impact model in the mouse. One hour after trauma there was an increase in cytosolic cytochrome c immunoreactivity. The increases in cytosolic cytochrome c preceded DNA fragmentation, which started at 4 hours. Western blots of mitochondrial and cytosolic fractions confirmed that there was a translocation of cytochrome c from the mitochondria after TBI. Mice deficient in manganese superoxide dismutase (MnSOD) showed an increased loss of mitochondrial cytochrome c after trauma, but less apoptotic cell death 4 and 24 hours after injury compared with wild-type control mice. However, the overall cell death was increased in MnSOD mice, as illustrated by a larger cortical lesion in these animals. The results show that cytochrome c is released from the mitochondria after severe TBI partly by a free radical–dependent mechanism, and that massive mitochondrial cytochrome c release is a predictor of necrotic cell death rather than apoptosis.


Stroke | 2000

Cell Death After Exposure to Subarachnoid Hemolysate Correlates Inversely With Expression of CuZn–Superoxide Dismutase

Paul G. Matz; Jean-Christophe Copin; Pak H. Chan

Background and Purpose Subarachnoid hemolysate (SAH) has been associated with oxidative brain injury, cell death, and apoptosis. We hypothesized that over-expression of CuZn–superoxide dismutase (CuZn-SOD) would protect against injury after SAH, whereas reduction of its expression would exacerbate injury. Methods Saline (n=16) or hemolysate (n=50) was injected into transgenic mice overexpressing CuZn-SOD (SOD1-Tg), CuZn-SOD heterozygous knockout mutants (SOD1+/−), and wild-type littermates (Wt). Mice were killed at 24 hours. Stress gene induction was evaluated by immunocytochemistry and Western blotting for hemeoxygenase-1 and heat shock protein 70. Apoptosis was evaluated by 3′-OH nick end-labeling and DNA gel electrophoresis. Cell death was quantified through histological assessment after cresyl violet staining. Results Histological assessment demonstrated neocortical cell death in regions adjacent to the blood injection. Overall cell death was reduced 43% in SOD1-Tg mutants (n=6) compared with Wt littermates (n=6;P <0.02). In contrast, cell death was increased >40% in SOD1+/− mutants (n=6;P <0.05). Both hemeoxygenase-1 and heat shock protein 70 were induced after SAH. Apoptosis was also present after SAH, as evidenced by 3′-OH end-labeling and DNA laddering. However, the degree of stress gene induction and apoptosis did not vary between Wt, SOD1-Tg, and SOD1+/− mice. Conclusions The extent of CuZn-SOD expression in the cytosol correlates with cell death after exposure to SAH in a manner separate from apoptosis. Overexpression of CuZn-SOD may potentially be an avenue for therapeutic intervention.

Collaboration


Dive into the Jean-Christophe Copin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yibing Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge