Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvan Gasche is active.

Publication


Featured researches published by Yvan Gasche.


The New England Journal of Medicine | 2013

Targeted Temperature Management at 33°C versus 36°C after Cardiac Arrest

Niklas Nielsen; Jørn Wetterslev; Tobias Cronberg; David Erlinge; Yvan Gasche; Christian Hassager; Janneke Horn; Jan Hovdenes; Jesper Kjaergaard; Michael A. Kuiper; Tommaso Pellis; Pascal Stammet; Michael Wanscher; Matthew Peter Wise; Anders Aneman; Nawaf Al-Subaie; Søren Boesgaard; John Bro-Jeppesen; Iole Brunetti; Jan Frederik Bugge; Christopher D. Hingston; Nicole P. Juffermans; Matty Koopmans; Lars Køber; Jørund Langørgen; Gisela Lilja; Jacob Eifer Møller; Malin Rundgren; Christian Rylander; Ondrej Smid

BACKGROUND Unconscious survivors of out-of-hospital cardiac arrest have a high risk of death or poor neurologic function. Therapeutic hypothermia is recommended by international guidelines, but the supporting evidence is limited, and the target temperature associated with the best outcome is unknown. Our objective was to compare two target temperatures, both intended to prevent fever. METHODS In an international trial, we randomly assigned 950 unconscious adults after out-of-hospital cardiac arrest of presumed cardiac cause to targeted temperature management at either 33°C or 36°C. The primary outcome was all-cause mortality through the end of the trial. Secondary outcomes included a composite of poor neurologic function or death at 180 days, as evaluated with the Cerebral Performance Category (CPC) scale and the modified Rankin scale. RESULTS In total, 939 patients were included in the primary analysis. At the end of the trial, 50% of the patients in the 33°C group (235 of 473 patients) had died, as compared with 48% of the patients in the 36°C group (225 of 466 patients) (hazard ratio with a temperature of 33°C, 1.06; 95% confidence interval [CI], 0.89 to 1.28; P=0.51). At the 180-day follow-up, 54% of the patients in the 33°C group had died or had poor neurologic function according to the CPC, as compared with 52% of patients in the 36°C group (risk ratio, 1.02; 95% CI, 0.88 to 1.16; P=0.78). In the analysis using the modified Rankin scale, the comparable rate was 52% in both groups (risk ratio, 1.01; 95% CI, 0.89 to 1.14; P=0.87). The results of analyses adjusted for known prognostic factors were similar. CONCLUSIONS In unconscious survivors of out-of-hospital cardiac arrest of presumed cardiac cause, hypothermia at a targeted temperature of 33°C did not confer a benefit as compared with a targeted temperature of 36°C. (Funded by the Swedish Heart-Lung Foundation and others; TTM ClinicalTrials.gov number, NCT01020916.).


Journal of Cerebral Blood Flow and Metabolism | 1999

Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice : A possible role in blood-brain barrier dysfunction

Yvan Gasche; Miki Fujimura; Yuiko Morita-Fujimura; Jean-Christophe Copin; Makoto Kawase; Justin Massengale; Pak H. Chan

During cerebral ischemia blood–brain barrier (BBB) disruption is a critical event leading to vasogenic edema and secondary brain injury. Gelatinases A and B are matrix metalloproteinases (MMP) able to open the BBB. The current study analyzes by zymography the early gelatinases expression and activation during permanent ischemia in mice (n = 15). ProMMP-9 expression was significantly (P < 0.001) increased in ischemic regions compared with corresponding contralateral regions after 2 hours of ischemia (mean 694.7 arbitrary units [AU], SD ± 238.4 versus mean 107.6 AU, SD ± 15.6) and remained elevated until 24 hours (mean 745,7 AU, SD ± 157.4). Moreover, activated MMP-9 was observed 4 hours after the initiation of ischemia. At the same time as the appearance of activated MMP-9, we detected by the Evans blue extravasation method a clear increase of BBB permeability, Tissue inhibitor of metalloproteinase-1 was not modified during permanent ischemia at any time. The ProMMP-2 was significantly (P < 0.05) increased only after 24 hours of permanent ischemia (mean 213.2 AU, SD ± 60.6 versus mean 94.6 AU, SD ± 13.3), and no activated form was observed. The appearance of activated MMP-9 after 4 hours of ischemia in correlation with BBB permeability alterations suggests that MMP-9 may play an active role in early vasogenic edema development after stroke.


Journal of Cerebral Blood Flow and Metabolism | 2001

Matrix Metalloproteinase Inhibition Prevents Oxidative Stress-Associated Blood–Brain Barrier Disruption after Transient Focal Cerebral Ischemia

Yvan Gasche; Jean-Christophe Copin; Taku Sugawara; Miki Fujimura; Pak H. Chan

Oxidative stress generated during stroke is a critical event leading to blood–brain barrier (BBB) disruption with secondary vasogenic edema and hemorrhagic transformation of infarcted brain tissue, restricting the benefit of thrombolytic reperfusion. In this study, the authors demonstrate that ischemia-reperfusion–induced BBB disruption in mice deficient in copper/zinc-superoxide dismutase (SOD1) was reduced by 88% (P < 0.0001) and 73% (P < 0.01), respectively, after 3 and 7 hours of reperfusion occurring after 1 hour of ischemia by the inhibition of matrix metalloproteinases. Accordingly, the authors show that local metalloproteinase-generated proteolytic imbalance is more intense in ischemic regions of SOD1 mice than in wild-type litter mates. Moreover, active in situ proteolysis is, for the first time, demonstrated in ischemic leaking capillaries that produce reactive oxygen species. By showing that oxidative stress mediates BBB disruption through metalloproteinase activation in experimental ischemic stroke, this study provides a new target for future therapeutic strategies to prevent BBB disruption and potentially reperfusion-triggered intracerebral hemorrhage.


Brain Research | 1999

Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion.

Miki Fujimura; Yvan Gasche; Yuiko Morita-Fujimura; Justin Massengale; Makoto Kawase; Pak H. Chan

Blood-brain barrier (BBB) disruption is thought to play a critical role in the pathophysiology of ischemia/reperfusion. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that can degrade all the components of the extracellular matrix when they are activated. Gelatinase A (MMP-2) and gelatinase B (MMP-9) are able to digest the endothelial basal lamina, which plays a major role in maintaining BBB impermeability. The present study examined the expression and activation of gelatinases before and after transient focal cerebral ischemia (FCI) in mice. Adult male CD1 mice were subjected to 60 min FCI and reperfusion. Zymography was performed from 1 to 23 h after reperfusion using the protein extraction method with detergent extraction and affinity-support purification. MMP-9 expression was also examined by both immunohistochemistry and Western blot analysis, and tissue inhibitors to metalloproteinase-1 was measured by reverse zymography. The BBB opening was evaluated by the Evans blue extravasation method. The 88-kDa activated MMP-9 was absent from the control specimens, while it appeared 3 h after transient ischemia by zymography. At this time point, the BBB permeability alteration was detected in the ischemic brain. Both pro-MMP-9 (96 kDa) and pro-MMP-2 (72 kDa) were seen in the control specimens, and were markedly increased after FCI. A significant induction of MMP-9 was confirmed by both immunohistochemistry and Western blot analysis. The early appearance of activated MMP-9, associated with evidence of BBB permeability alteration, suggests that activation of MMP-9 contributes to the early formation of vasogenic edema after transient FCI.


Journal of Neurotrauma | 2002

Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CA1 subregion in rats

Taku Sugawara; Anders Lewén; Nobuo Noshita; Yvan Gasche; Pak H. Chan

The hippocampal CA1 neurons are selectively vulnerable to global ischemia, and neuronal death occurs in a delayed manner. The threshold of global ischemia duration that induces neuronal death has been studied, but the relationship between ischemia duration and glial death in the hippocampal CA1 area has not been fully studied. We examined neuronal/glial viability and morphological changes in the CA1 subregion after different durations of global ischemia. Global ischemia was induced in Sprague-Dawley rats by 10, 5, and 3 min of bilateral common carotid artery occlusion and hypotension. At 1-56 days after ischemia, the morphological reactions of neurons, astrocytes, oligodendrocytes, and microglia were immunohistochemically evaluated. Most of the hippocampal CA1 pyramidal neurons underwent delayed death at 3 days after 10/5 min of ischemia, but not after 3 min of ischemia. The number of astrocytes gradually declined after 10/5 min of ischemia, and viable astrocytes showed characteristic staged morphological reactions. Oligodendrocytes also showed morphological changes in their processes after 10/5 min of ischemia. Microglia transformed into a reactive form at 5 days only after 10/5 min of ischemia. These data suggest that some morphological changes in glial cells were not dependent on neuronal cell death, but their own reactions to the different severity of ischemia.


Stroke | 1999

Exacerbation of Delayed Cell Injury After Transient Global Ischemia in Mutant Mice With CuZn Superoxide Dismutase Deficiency

Makoto Kawase; Kensuke Murakami; Miki Fujimura; Yuiko Morita-Fujimura; Yvan Gasche; Takeo Kondo; Richard W. Scott; Pak H. Chan

BACKGROUND AND PURPOSE We have demonstrated that copper-zinc superoxide dismutase (CuZn-SOD), a cytosolic isoenzyme of SODs, has a protective role in the pathogenesis of superoxide radical-mediated brain injury. Using mice bearing a disruption of the CuZn-SOD gene (Sod1), the present study was designed to clarify the role of superoxide anion in the pathogenesis of selective vulnerability after transient global ischemia. METHODS Sod1 knockout homozygous mutant mice (Sod1 -/-) with a complete absence of endogenous CuZn-SOD activity, heterozygous mutant mice (Sod1 +/-) with a 50% decrease in the activity, and littermate wild-type mice (male, 35 to 45 g) were subjected to global ischemia. Since the plasticity of the posterior communicating artery (PcomA) has been reported to influence the outcome of hippocampal injury, we assessed the relation between the plasticity of PcomAs and the decrease of regional cerebral blood flow in global ischemia. RESULTS The fluorescence intensity of hydroethidine oxidation, a measurement of ethidium fluorescence for superoxide radicals, was increased in mutant mice 1 day after both 5 and 10 minutes of global ischemia, compared with wild-type mice. Hippocampal injury in the PcomA hypoplastic brains showed significant exacerbation in mutant mice compared with wild-type littermates 3 days after 5 minutes of global ischemia, although a marked difference was not observed at 1 day. CONCLUSIONS These data suggest that superoxide radicals play an important role in the pathogenesis of delayed injury in the vulnerable hippocampal CA1 subregion after transient global ischemia.


American Heart Journal | 2012

Target temperature management after out-of-hospital cardiac arrest-a randomized, parallel-group, assessor-blinded clinical trial-rationale and design

Niklas Nielsen; Jørn Wetterslev; Nawaf Al-Subaie; Bertil Andersson; John Bro-Jeppesen; Gillian Bishop; Iole Brunetti; Julius Cranshaw; Tobias Cronberg; Kristin Edqvist; David Erlinge; Yvan Gasche; Guy Glover; Christian Hassager; Janneke Horn; Jan Hovdenes; Jesper Johnsson; Jesper Kjaergaard; Michael A. Kuiper; Jørund Langørgen; Lewis Macken; Louise Martinell; Patrik Martner; Thomas Pellis; Paolo Pelosi; Per Petersen; Stefan Persson; Malin Rundgren; Manoj Saxena; Robert Svensson

BACKGROUND Experimental animal studies and previous randomized trials suggest an improvement in mortality and neurologic function with induced hypothermia after cardiac arrest. International guidelines advocate the use of a target temperature management of 32°C to 34°C for 12 to 24 hours after resuscitation from out-of-hospital cardiac arrest. A systematic review indicates that the evidence for recommending this intervention is inconclusive, and the GRADE level of evidence is low. Previous trials were small, with high risk of bias, evaluated select populations, and did not treat hyperthermia in the control groups. The optimal target temperature management strategy is not known. METHODS The TTM trial is an investigator-initiated, international, randomized, parallel-group, and assessor-blinded clinical trial designed to enroll at least 850 adult, unconscious patients resuscitated after out-of-hospital cardiac arrest of a presumed cardiac cause. The patients will be randomized to a target temperature management of either 33°C or 36°C after return of spontaneous circulation. In both groups, the intervention will last 36 hours. The primary outcome is all-cause mortality at maximal follow-up. The main secondary outcomes are the composite outcome of all-cause mortality and poor neurologic function (cerebral performance categories 3 and 4) at hospital discharge and at 180 days, cognitive status and quality of life at 180 days, assessment of safety and harm. DISCUSSION The TTM trial will investigate potential benefit and harm of 2 target temperature strategies, both avoiding hyperthermia in a large proportion of the out-of-hospital cardiac arrest population.


The Journal of Neuroscience | 2003

Neurodegeneration in Striatum Induced by the Mitochondrial Toxin 3-Nitropropionic Acid: Role of Matrix Metalloproteinase-9 in Early Blood-Brain Barrier Disruption?

Gyung Whan Kim; Yvan Gasche; Susanna M. Grzeschik; Jean-Christophe Copin; Carolina M. Maier; Pak H. Chan

Blood-brain barrier (BBB) dysfunction is a potential mechanism involved in progressive striatal damage induced by the mitochondrial excitotoxin, 3-nitropropionic acid (3-NP). After activation by proteases and free radicals, matrix metalloproteinases (MMPs), particularly MMP-9 and -2, can digest the endothelial basal lamina leading to BBB opening. Using CD-1 mice, we show that MMP-9 expression by zymography is increased in the injured striatum compared with the contralateral striatum 2 hr after 3-NP injection [133.50 ± 57.17 vs 50.25 ± 13.56; mean ± SD of optical densities in arbitrary units (A.U.); p < 0.005] and remains elevated until 24 hr (179.33 ± 78.24 A.U.). After 4 hr, MMP-9 expression and activation are accompanied by an increase in BBB permeability. MMP inhibition attenuates BBB disruption, swelling, and lesion volume compared with vehicle-treated controls. There is a clear spatial relationship between MMP-9 expression and oxidized hydroethidine, indicating reactive oxygen species (ROS) production. Furthermore, transgenic mice that overexpress copper/zinc-superoxide dismutase (SOD1) show decreased lesion size and edema along with decreased immunoreactivity for MMP-9, compared with wild-type littermates (lesion: 38.8 ± 15.1 and 53.3 ± 10.3, respectively, p ≤ 0.05; edema: 21.8 ± 11.2 and 35.28 ± 11, respectively, p ≤ 0.05; MMP-9-positive cells: 352 ± 57 and 510 ± 45, respectively, p ≤ 0.005), whereas knock-out mice deficient in SOD1 display significantly greater swelling (48.65 ± 17; p ≤ 0.05). We conclude that early expression and activation of MMP-9 by ROS may be involved in early BBB disruption and progressive striatal damage after 3-NP treatment.


Journal of Cerebral Blood Flow and Metabolism | 2000

Overexpression of Copper and Zinc Superoxide Dismutase in Transgenic Mice Prevents the Induction and Activation of Matrix Metalloproteinases after Cold Injury-Induced Brain Trauma

Yuiko Morita-Fujimura; Miki Fujimura; Yvan Gasche; Jean-Christophe Copin; Pak H. Chan

Matrix metalloproteinases (MMPs), a family of proteolytic enzymes which degrade the extracellular matrix, are implicated in blood—brain barrier disruption, which is a critical event leading to vasogenic edema. To investigate the role of reactive oxygen species (ROS) in the expression of MMPs in vasogenic edema, the authors measured gelatinase activities before and after cold injury (CI) using transgenic mice that overexpress superoxide dismutase-1. A marked induction of pro-gelatinase B (pro-MMP-9) was seen 2 hours after CI and was maximized at 12 hours in wild-type mice. The pro-MMP-9 level was significantly lower in transgenic mice 4 hours (P < 0.001) and 12 hours (P < 0.05) after CI compared to wild-type mice. The activated MMP-9 was detected from 6 to 24 hours after injury. A mild induction of pro-gelatinase A (pro-MMP-2) was seen at 6 hours and was sustained until 7 days. In contrast, the activated form of MMP-2 appeared at 24 hours, was maximized at 7 days, and was absent in transgenic mice. Western blot analysis showed that the tissue inhibitors of metalloproteinases were not modified after CI. The results suggest that ROS production after CI may contribute to the induction and/or activation of MMPs and could thereby exacerbate endothelial cell injury and the development of vasogenic edema after injury.


The FASEB Journal | 2002

Overexpression of SOD1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release

Taku Sugawara; Anders Lewén; Yvan Gasche; Fengshan Yu; Pak H. Chan

Defective Cu, Zn‐superoxide dismutase (SOD1) is responsible for some types of amyotrophic lateral sclerosis, and ventral horn motor neurons (VMN) have been shown to die through a mitochondria‐dependent apoptotic pathway after chronic exposure to high levels of reactive oxygen species (ROS). VMN are also selectively vulnerable to mild spinal cord injury (SCI); however, the involvement of SOD1, ROS, and apoptosis in their death has not been clarified. Mild compression SCI was induced in SOD1‐overexpressing transgenic rats and wild‐type littermates. Superoxide production, mitochondrial release of cytochrome c, and activation of caspase‐9 were examined, and apoptotic DNA injury was also characterized. In the wild‐type animals, increased superoxide production, mitochondrial release of cytochrome c, and cleaved caspase‐9 were observed exclusively in VMN after SCI. Subsequently, a majority of VMN (75%) selectively underwent delayed apoptotic cell death. Transgenic animals showed less superoxide production, mitochondrial cytochrome c release, and caspase‐9 activation, resulting in death of only 45% of the VMN. These results suggest that the ROS‐initiated mitochondrial signaling pathway possibly plays a pivotal role in apoptotic VMN death after SCI and that increased levels of SOD1 in VMN reduce oxidative stress, thereby attenuating the activation of the pathway and delayed cell death.

Collaboration


Dive into the Yvan Gasche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Hassager

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesper Kjaergaard

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jørn Wetterslev

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janneke Horn

University of Amsterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge