Jean-Daniel Malcor
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Daniel Malcor.
Biomaterials | 2016
Jean-Daniel Malcor; Daniel Bax; Samir W. Hamaia; Natalia Davidenko; Serena Michelle Best; Ruth E. Cameron; Richard W. Farndale; Dominique Bihan
Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons.
Journal of Thrombosis and Haemostasis | 2018
Isuru Induruwa; Masaaki Moroi; Arkadiusz Mieczyslaw Bonna; Jean-Daniel Malcor; Joanna-Marie Howes; Elizabeth A. Warburton; Richard W. Farndale; Stephanie M. Jung
Essentials Glycoprotein VI (GPVI) binds collagen, starting thrombogenesis, and fibrin, stabilizing thrombi. GPVI‐dimers, not monomers, recognize immobilized fibrinogen and fibrin through their D‐domains. Collagen, D‐fragment and D‐dimer may share a common or proximate binding site(s) on GPVI‐dimer. GPVI‐dimer–fibrin interaction supports spreading, activation and adhesion involving αIIbβ3.
Metallomics | 2016
Ben R. Watson; Nathan A. White; Kirk A. Taylor; Joanna-Marie Howes; Jean-Daniel Malcor; Dominique Bihan; Stewart O. Sage; Richard W. Farndale; Nicholas Pugh
Following platelet adhesion and primary activation at sites of vascular injury, secondary platelet activation is induced by soluble platelet agonists, such as ADP, ATP, thrombin and thromboxane. Zinc ions are also released from platelets and damaged cells and have been shown to act as a platelet agonist. However, the mechanism of zinc-induced platelet activation is not well understood. Here we show that exogenous zinc gains access to the platelet cytosol and induces full platelet aggregation that is dependent on platelet protein tyrosine phosphorylation, PKC and integrin αIIbβ3 activity and is mediated by granule release and secondary signalling. ZnSO4 increased the binding affinity of GpVI, but not integrin α2β1. Low concentrations of ZnSO4 potentiated platelet aggregation by collagen-related peptide (CRP-XL), thrombin and adrenaline. Chelation of intracellular zinc reduced platelet aggregation induced by a number of different agonists, inhibited zinc-induced tyrosine phosphorylation and inhibited platelet activation in whole blood under physiologically relevant flow conditions. Our data are consistent with a transmembrane signalling role for zinc in platelet activation during thrombus formation.
Acta Biomaterialia | 2018
Natalia Davidenko; Samir W. Hamaia; Daniel Bax; Jean-Daniel Malcor; Cf Schuster; Donald Gullberg; Richard W. Farndale; Serena Michelle Best; Ruth E. Cameron
Graphical abstract
Matrix Biology | 2017
Samir W. Hamaia; Daisy Luff; Emma Hunter; Jean-Daniel Malcor; Dominique Bihan; Donald Gullberg; Richard W. Farndale
The collagen-binding integrins recognise collagen through their inserted (I) domain, where co-ordination of a Mg2 + ion in the metal ion-dependent site is reorganised by ligation by a collagen glutamate residue found in specific collagen hexapeptide motifs. Here we show that GROGER, found in the N-terminal domain of collagens I and III, is only weakly recognised by α10β1, an important collagen receptor on chondrocytes, contrasting with the other collagen-binding integrins. Alignment of I domain sequence and molecular modelling revealed a clash between a unique arginine residue (R215) in α10β1 and the positively-charged GROGER. Replacement of R215 with glutamine restored binding. Substituting arginine at the equivalent locus (Q214) in integrins α1 and α2 I domains impaired their binding to GROGER. Collagen II, abundant in cartilage, lacks GROGER. GRSGET is uniquely expressed in the C-terminus of collagen II, but this motif is similarly not recognised by α10β1. These data suggest an evolutionary imperative to maintain accessibility of the terminal domains of collagen II in tissues such as cartilage, perhaps during endochondral ossification, where α10β1 is the main collagen-binding integrin.
Scientific Reports | 2018
Hao Wei; Jean-Daniel Malcor; Matthew T. Harper
Platelets protect the vascular system during damage or inflammation, but platelet activation can result in pathological thrombosis. Activated platelets release a variety of extracellular vesicles (EVs). EVs shed from the plasma membrane often expose phosphatidylserine (PS). These EVs are pro-thrombotic and increased in number in many cardiovascular and metabolic diseases. The mechanisms by which PS-exposing EVs are shed from activated platelets are not well characterised. Cholesterol-rich lipid rafts provide a platform for coordinating signalling through receptors and Ca2+ channels in platelets. We show that cholesterol depletion with methyl-β-cyclodextrin or sequestration with filipin prevented the Ca2+-triggered release of PS-exposing EVs. Although calpain activity was required for release of PS-exposing, calpain-dependent cleavage of talin was not affected by cholesterol depletion. P2Y12 and TPα, receptors for ADP and thromboxane A2, respectively, have been reported to be in platelet lipid rafts. However, the P2Y12 antagonist, AR-C69931MX, or the cyclooxygenase inhibitor, aspirin, had no effect on A23187-induced release of PS-exposing EVs. Together, these data show that lipid rafts are required for release of PS-exposing EVs from platelets.
Research and Practice in Thrombosis and Haemostasis | 2018
Joanna-Marie Howes; Nicholas Pugh; Samir W. Hamaia; Stephanie M. Jung; Vera Knäuper; Jean-Daniel Malcor; Richard W. Farndale
Essentials MMP‐13 has the potential to influence platelet function and thrombus formation directly. We sought to elucidate whether MMP‐13 is able to bind to specific platelet receptors. MMP‐13 is able to bind to platelet alphaIIbbeta3 (αIIbβ3) and glycoprotein (GP)VI. These interactions are sufficient to inhibit platelet aggregation and thrombus formation.
Thrombosis and Haemostasis | 2018
Alexander T. Hardy; Verónica Palma-Barqueros; Stephanie Watson; Jean-Daniel Malcor; Johannes A. Eble; Elizabeth E. Gardiner; José Eliseo Blanco; Rafael Guijarro-Campillo; Juan L. Delgado; María L. Lozano; Raúl Teruel-Montoya; Vicente Vicente; Steve P. Watson; José Rivera; Francisca Ferrer-Marin
Neonatal platelets are hypo-reactive to the tyrosine kinase-linked receptor agonist collagen. Here, we have investigated whether the hypo-responsiveness is related to altered levels of glycoprotein VI (GPVI) and integrin α2β1, or to defects in downstream signalling events by comparison to platelet activation by C-type lectin-like receptor 2 (CLEC-2). GPVI and CLEC-2 activate a Src- and Syk-dependent signalling pathway upstream of phospholipase C (PLC) γ2. Phosphorylation of a conserved YxxL sequence known as a (hemi) immunotyrosine-based-activation-motif (ITAM) in both receptors is critical for Syk activation. Platelets from human pre-term and full-term neonates display mildly reduced expression of GPVI and CLEC-2, as well as integrin αIIbβ3, accounted for at the transcriptional level. They are also hypo-responsive to the two ITAM receptors, as shown by measurement of integrin αIIbβ3 activation, P-selectin expression and Syk and PLCγ2 phosphorylation. Mouse platelets are also hypo-responsive to GPVI and CLEC-2 from late gestation to 2 weeks of age, as determined by measurement of integrin αIIbβ3 activation. In contrast, the response to G protein-coupled receptor agonists was only mildly reduced and in some cases not altered in neonatal platelets of both species. A reduction in response to GPVI and CLEC-2, but not protease-activated receptor 4 (PAR-4) peptide, was also observed in adult mouse platelets following immune thrombocytopenia, whereas receptor expression was not impaired. Our results demonstrate developmental differences in platelet responsiveness to GPVI and CLEC-2, and also following immune platelet depletion leading to reduced Syk activation. The rapid generation of platelets during development or following platelet depletion is achieved at the expense of signalling by ITAM-coupled receptors.
Haematologica | 2018
Phillip L.R. Nicolson; Craig E. Hughes; Stephanie Watson; Sophie H. Nock; Alexander T. Hardy; Callum N. Watson; Samantha J. Montague; Jean-Daniel Malcor; Mark R. Thomas; Alice Y. Pollitt; Michael G. Tomlinson; Guy Pratt; Steve P. Watson
Ibrutinib and acalabrutinib are irreversible inhibitors of Bruton tyrosine kinase used in the treatment of B-cell malignancies. They bind irreversibly to cysteine 481 of Bruton tyrosine kinase, blocking autophosphorylation on tyrosine 223 and phosphorylation of downstream substrates including phospholipase C-γ2. In the present study, we demonstrate that concentrations of ibrutinib and acalabrutinib that block Bruton tyrosine kinase activity, as shown by loss of phosphorylation at tyrosine 223 and phospholipase C-γ2, delay but do not block aggregation in response to a maximally-effective concentration of collagen-related peptide or collagen. In contrast, 10- to 20-fold higher concentrations of ibrutinib or acalabrutinib block platelet aggregation in response to glycoprotein VI agonists. Ex vivo studies on patients treated with ibrutinib, but not acalabrutinib, showed a reduction of platelet aggregation in response to collagen-related peptide indicating that the clinical dose of ibrutinib but not acalabrutinib is supramaximal for Bruton tyrosine kinase blockade. Unexpectedly, low concentrations of ibrutinib inhibited aggregation in response to collagen-related peptide in patients deficient in Bruton tyrosine kinase. The increased bleeding seen with ibrutinib over acalabrutinib is due to off-target actions of ibrutinib that occur because of unfavorable pharmacodynamics.
Biomaterials | 2018
Jean-Daniel Malcor; Victoria Juskaite; Despoina Gavriilidou; Emma Hunter; Natalia Davidenko; Samir W. Hamaia; Sanjay Sinha; Ruth E. Cameron; Serena M. Best; Birgit Leitinger; Richard W. Farndale
Collagen-based scaffolds may require chemical crosslinking to achieve mechanical properties suitable for tissue engineering. Carbodiimide treatment, often used for this purpose, consumes amino acid side chains required for receptor recognition, thus reducing cell–collagen interaction. Here, we restore recognition and function of both von Willebrand Factor (VWF) and Discoidin Domain Receptor 2 (DDR2) to crosslinked collagen films by derivatisation with a specific triple-helical peptide (THP), an approach previously applied to integrin-mediated cellular adhesion. The THP contained the collagen III-derived active sequence, GPRGQOGVNleGFO, conjugated to a photoreactive moiety, diazirine, allowing UV-dependent covalent coupling to collagen films. Crosslinking of collagen films attenuated the binding of recombinant VWF A3 domain and of DDR2 (as the GST and Fc fusions, respectively), and coupling of the specific THP restored their attachment. These derivatised films supported activation of DDR2 expressed in either COS-7 or HEK293 cells, reflected by phosphorylation of tyrosine 740, and VWF-mediated platelet deposition from flowing blood was restored. Further, such films were able to increase low-density lipoprotein uptake in vascular endothelial cells, a marker for endothelial phenotype. Thus, covalent linkage of specific THPs to crosslinked collagen films i) restores their cognate protein binding, ii) triggers the corresponding cellular responses, and iii) demonstrates the broad applicability of the approach to a range of receptors for applications in regenerative medicine.