Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Dominique Gallezot is active.

Publication


Featured researches published by Jean-Dominique Gallezot.


Biological Psychiatry | 2010

Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo.

Jonas Hannestad; Jean-Dominique Gallezot; Beata Planeta-Wilson; Shu-fei Lin; Wendol Williams; Christopher H. van Dyck; Robert T. Malison; Richard E. Carson; Yu-Shin Ding

BACKGROUND Attention-deficit/hyperactivity disorder is a psychiatric disorder that starts in childhood. The mechanism of action of methylphenidate, the most common treatment for attention deficit hyperactivity disorder, is unclear. In vitro, the affinity of methylphenidate for the norepinephrine transporter (NET) is higher than that for the dopamine transporter (DAT). The goal of this study was to use positron emission tomography to measure the occupancy of brain norepinephrine transporter by methylphenidate in vivo in humans. METHODS We used (S,S)-[¹¹C] methylreboxetine ([¹¹C]MRB) to determine the effective dose 50 (ED₅₀) of methylphenidate for NET. In a within-subject design, healthy subjects (n = 11) received oral, single-blind placebo and 2.5, 10, and 40 mg of methylphenidate 75 min before [¹¹C]MRB injection. Dynamic positron emission tomography imaging was performed for 2 hours with the High Resolution Research Tomograph. The multilinear reference tissue model with occipital cortex as the reference region was used to estimate binding potential non-displaceable (BP(ND)) in the thalamus and other NET-rich regions. RESULTS BP(ND) was reduced by methylphenidate in a dose-dependent manner in thalamus and other NET-rich regions. The global ED₅₀ was estimated to be .14 mg/kg; therefore, the average clinical maintenance dose of methylphenidate (.35-.55 mg/kg) produces 70% to 80% occupancy of NET. CONCLUSIONS For the first time in humans, we demonstrate that oral methylphenidate significantly occupies NET at clinically relevant doses. The ED₅₀ is lower than that for DAT (.25 mg/kg), suggesting the potential relevance of NET inhibition in the therapeutic effects of methylphenidate in attention-deficit/hyperactivity disorder.


Neuron | 2014

Histidine Decarboxylase Deficiency Causes Tourette Syndrome: Parallel Findings in Humans and Mice

Lissandra Castellan Baldan; Kyle A. Williams; Jean-Dominique Gallezot; Vladimir Pogorelov; Maximiliano Rapanelli; Michael J. Crowley; George M. Anderson; Erin Loring; Roxanne Gorczyca; Eileen Billingslea; Suzanne Wasylink; A. Gulhan Ercan-Sencicek; Kuakarun Krusong; Bennett L. Leventhal; Hiroshi Ohtsu; Michael H. Bloch; Zoë A. Hughes; John H. Krystal; Linda C. Mayes; Ivan E. de Araujo; Yu-Shin Ding; Matthew W. State; Christopher Pittenger

Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine (DA) D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal DA levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. DA D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm histidine decarboxylase deficiency as a rare cause of TS and identify HA-DA interactions in the basal ganglia as an important locus of pathology.


NeuroImage | 2012

Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates

Jonas Hannestad; Jean-Dominique Gallezot; Thomas Schafbauer; Keunpoong Lim; Tracy Kloczynski; Evan D. Morris; Richard E. Carson; Yu-Shin Ding; Kelly P. Cosgrove

UNLABELLED Microglia play an essential role in many brain diseases. Microglia are activated by local tissue damage or inflammation, but systemic inflammation can also activate microglia. An important clinical question is whether the effects of systemic inflammation on microglia mediate the deleterious effects of systemic inflammation in diseases such as Alzheimers dementia, multiple sclerosis, and stroke. Positron Emission Tomography (PET) imaging with ligands that bind to Translocator Protein (TSPO) can be used to detect activated microglia. The aim of this study was to evaluate whether the effect of systemic inflammation on microglia could be measured with PET imaging in nonhuman primates, using the TSPO ligand [(11)C]PBR28. METHODS Six female baboons (Papio anubis) were scanned before and at 1h and/or 4h and/or 22 h after intravenous administration of E. coli lipopolysaccharide (LPS; 0.1mg/kg), which induces systemic inflammation. Regional time-activity data from regions of interest (ROIs) were fitted to the two-tissue compartmental model, using the metabolite-corrected arterial plasma curve as input function. Total volume of distribution (V(T)) of [(11)C]PBR28 was used as a measure of total ligand binding. The primary outcome was change in V(T) from baseline. Serum levels of tumor necrosis factor alpha (TNFα), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and interleukin-8 (IL-8) were used to assess correlations between systemic inflammation and microglial activation. In one baboon, immunohistochemistry was used to identify cells expressing TSPO. RESULTS LPS administration increased [(11)C]PBR28 binding (F(3,6)=5.1, p=.043) with a 29 ± 16% increase at 1h (n=4) and a 62 ± 34% increase at 4h (n=3) post-LPS. There was a positive correlation between serum IL-1β and IL-6 levels and the increase in [(11)C]PBR28 binding. TSPO immunoreactivity occurred almost exclusively in microglia and rarely in astrocytes. CONCLUSION In the nonhuman-primate brain, LPS-induced systemic inflammation produces a robust increase in the level of TSPO that is readily detected with [(11)C]PBR28 PET. The effect of LPS on [(11)C]PBR28 binding is likely mediated by inflammatory cytokines. Activation of microglia may be a mechanism through which systemic inflammatory processes influence the course of diseases such as Alzheimers, multiple sclerosis, and possibly depression.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Imaging robust microglial activation after lipopolysaccharide administration in humans with PET.

Christine M. Sandiego; Jean-Dominique Gallezot; Brian Pittman; Nabeel Nabulsi; Keunpoong Lim; Shu-fei Lin; David Matuskey; Jae-Yun Lee; Kevin C. O’Connor; Yiyun Huang; Richard E. Carson; Jonas Hannestad; Kelly P. Cosgrove

Significance Neuroinflammation is a brain immune response that is associated with neurodegenerative diseases and is primarily driven by activation of microglia, the brain’s resident macrophages. Dysfunctional microglial activation may contribute to the behavioral changes observed in neurodegenerative diseases. Upon activation, microglia express translocator protein, which can be imaged with the radiotracer [11C]PBR28 and positron emission tomography (PET) in the living human brain. We imaged healthy human subjects with [11C]PBR28 and PET before and after i.v. administration of lipopolysaccharide (LPS), a potent immune activator. LPS produced a marked increase in brain microglial activation, peripheral inflammatory cytokine levels, and self-reported sickness symptoms. This imaging paradigm can provide a direct approach to test new medications for their potential to reduce acute neuroinflammation. Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30–60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.


Brain Behavior and Immunity | 2013

The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: A [11C]PBR28 PET study

Jonas Hannestad; Nicole DellaGioia; Jean-Dominique Gallezot; Keunpoong Lim; Nabeel Nabulsi; Irina Esterlis; Brian Pittman; Jae-Yun Lee; Kevin C. O’Connor; Daniel Pelletier; Richard E. Carson

Depression is associated with systemic inflammation. In animals, systemic inflammation can induce neuroinflammation and activation of microglia; however, postmortem studies have not convincingly shown that there is neuroinflammation in depression. The purpose of this study was to use positron emission tomography (PET) with [¹¹C]PBR28, which binds to the neuroinflammation marker translocator protein 18 kDa (TSPO), to compare the level of TSPO between individuals with depression and control subjects. Ten individuals who were in an acute episode of major depression and 10 control subjects matched for TSPO genotype and other characteristics had a PET scan with arterial input function to quantify levels of TSPO in brain regions of interest (ROIs). Total volume of distribution (VT) of [¹¹C]PBR28 was used as a measure of total ligand binding. The primary outcome was the difference in VT between the two groups; this was assessed using a linear mixed model with group as a between-subject factor and region as a within-subject factor. There was no statistically significant difference in [¹¹C]PBR28 binding (VT) between the two groups. In fact, 7 of 10 individuals with depression had lower [¹¹C]PBR28 binding in all ROIs compared to their respective genotype-matched control subjects. Future studies are needed to determine whether individuals with mild-to-moderate depression have lower TSPO levels and to assess whether individuals with severe depression and/or with elevated levels of systemic inflammation might have higher TSPO levels than control subjects.


JAMA Psychiatry | 2013

Association of Posttraumatic Stress Disorder With Reduced In Vivo Norepinephrine Transporter Availability in the Locus Coeruleus

Robert H. Pietrzak; Jean-Dominique Gallezot; Yu-Shin Ding; Shannan Henry; Marc N. Potenza; Steven M. Southwick; John H. Krystal; Richard E. Carson; Alexander Neumeister

IMPORTANCE Animal data suggest that chronic stress is associated with a reduction in norepinephrine transporter (NET) availability in the locus coeruleus. However, it is unclear whether such models are relevant to posttraumatic stress disorder (PTSD), which has been linked to noradrenergic dysfunction in humans. OBJECTIVES To use positron emission tomography and the radioligand [11C]methylreboxetine to examine in vivo NET availability in the locus coeruleus in the following 3 groups of individuals: healthy adults (HC group), adults exposed to trauma who did not develop PTSD (TC group), and adults exposed to trauma who developed PTSD (PTSD group) and to evaluate the relationship between NET availability in the locus coeruleus and a contemporary phenotypic model of PTSD symptoms. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional positron emission tomography study under resting conditions at academic and Veterans Affairs medical centers among 56 individuals in the following 3 study groups: HC (n = 18), TC (n = 16), and PTSD (n = 22). MAIN OUTCOMES AND MEASURES The [11C]methylreboxetine-binding potential of NET availability in the locus coeruleus and the severity of PTSD symptoms assessed using the Clinician-Administered PTSD Scale. RESULTS The PTSD group had significantly lower NET availability than the HC group (41% lower, Cohen d = 1.07). NET availability did not differ significantly between the TC and HC groups (31% difference, Cohen d = 0.79) or between the TC and PTSD groups (15% difference, Cohen d = 0.28). In the PTSD group, NET availability in the locus coeruleus was independently positively associated with the severity of anxious arousal (ie, hypervigilance) symptoms (r = 0.52) but not with any of the other PTSD symptom clusters. CONCLUSIONS AND RELEVANCE These results suggest that PTSD is associated with significantly reduced NET availability in the locus coeruleus and that greater NET availability in this brain region is associated with increased severity of anxious arousal symptoms in individuals with PTSD.


Synapse | 2012

Affinity and selectivity of [11C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo

Jean-Dominique Gallezot; John D. Beaver; Roger N. Gunn; Nabeel Nabulsi; David Weinzimmer; Tarun Singhal; Mark Slifstein; Krista Fowles; Yu-Shin Ding; Yiyun Huang; Marc Laruelle; Richard E. Carson; Eugenii A. Rabiner

Although [11C]‐(+)‐PHNO has enabled quantification of the dopamine‐D3 receptor (D3R) in the human brain in vivo, its selectivity for the D3R is not sufficiently high to allow us to disregard its binding to the dopamine‐D2 receptor (D2R). We quantified the affinity of [11C]‐(+)‐PHNO for the D2R and D3R in the living primate brain. Two rhesus monkeys were examined on four occasions each, with [11C]‐(+)‐PHNO administered in a bolus + infusion paradigm. Varying doses of unlabeled (+)‐PHNO were coadministered on each occasion (total doses ranging from 0.09 to 5.61 μg kg−1). The regional binding potential (BPND) and the corresponding doses of injected (+)‐PHNO were used as inputs in a model that quantified the affinity of (+)‐PHNO for the D2R and D3R, as well as the regional fractions of the [11C]‐(+)‐PHNO signal attributable to D3R binding. (+)‐PHNO in vivo affinity for the D3R (Kd/fND ∼ 0.23–0.56 nM) was 25‐ to 48‐fold higher than that for the D2R (Kd/fND ∼ 11–14 nM). The tracer limits for (+)‐PHNO (dose associated with D3R occupancy ∼ 10%) were estimated at ∼0.02–0.04 μg kg−1 injected mass for anesthetized primate and at 0.01–0.02 μg kg−1 for awake human positron emission tomography (PET) studies. Our data enabled a rational design and interpretation of future PET studies with [11C]‐(+)‐PHNO. Synapse, 2012.


Synapse | 2010

PET Imaging of the Effects of Age and Cocaine on the Norepinephrine Transporter in the Human Brain Using (S,S)-[11C]O-Methylreboxetine and HRRT

Yu-Shin Ding; Tarun Singhal; Beata Planeta-Wilson; Jean-Dominique Gallezot; Nabeel Nabulsi; David Labaree; Jim Ropchan; Shannan Henry; Wendol Williams; Richard E. Carson; Alexander Neumeister; Robert T. Malison

Objectives: The role of the norepinephrine transporter (NET) in cocaine dependence has never been demonstrated via in vivo imaging due to the lack of suitable NET radioligands. Here we report our preliminary studies evaluting the NET in individuals with cocaine dependence (COC) in comparison to healthy controls (HC) using (S,S)‐[11C]methylreboxetine ([11C]MRB), the most promising C‐11 labeled positron‐emission tomography (PET) radioligand for NET developed to date. Methods: Twenty two human volunteers (10 COC and 12 HC) underwent dynamic 11C‐MRB‐PET acquisition using a High Resolution Research Tomograph (HRRT). Binding potential (BPND) parametric images were computed using the simplified reference tissue model (SRTM2) with occipital cortex as reference region. BPND values were compared between the two groups. Results: Locus coeruleus (LC), hypothalamus, and pulvinar showed a significant inverse correlation with age among HC (age range = 25–54 years; P = 0.04, 0.009, 0.03 respectively). The BPND was significantly increased in thalamus (27%; P < 0.02) and dorsomedial thalamic nuclei (30%; P < 0.03) in COC as compared to HC. Upon age normalization, the upregulation of NET in COC also reached significance in LC (63%, P < 0.01) and pulvinar (55%, P < 0.02) regions. Conclusion: Our results suggest that (a) brain NET concentration declines with age in HC, and (b) there is a significant upregulation of NET in thalamus and dorsomedial thalamic nucleus in COC as compared to HC. Our results also suggest that the use of [11C]MRB and HRRT provides an effective strategy for studying alterations of the NET system in humans. Synapse 64:30–38, 2010.


NeuroImage | 2014

Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: Implications on treatment of depression and ADHD

Yu-Shin Ding; Mika Naganawa; Jean-Dominique Gallezot; Nabeel Nabulsi; Shu-fei Lin; Jim Ropchan; David Weinzimmer; Timothy J. McCarthy; Richard E. Carson; Yiyun Huang; Marc Laruelle

BACKGROUND Atomoxetine (ATX), a drug for treatment of depression and ADHD, has a high affinity for the norepinephrine transporter (NET); however, our previous study showed it had a blocking effect similar to fluoxetine on binding of [(11)C]DASB, a selective serotonin transporter (SERT) ligand. Whether the therapeutic effects of ATX are due to inhibition of either or both transporters is not known. Here we report our comparative PET imaging studies with [(11)C]MRB (a NET ligand) and [(11)C]AFM (a SERT ligand) to evaluate in vivo IC50 values of ATX in monkeys. METHODS Rhesus monkeys were scanned up to four times with each tracer with up to four doses of ATX. ATX or saline (placebo) infusion began 2h before each PET scan, lasting until the end of the 2-h scan. The final infusion rates were 0.01-0.12mg/kg/h and 0.045-1.054mg/kg/h for the NET and SERT studies, respectively. ATX plasma levels and metabolite-corrected arterial input functions were measured. Distribution volumes (VT) and IC50 values were estimated. RESULTS ATX displayed dose-dependent occupancy on both NET and SERT, with a higher occupancy on NET: IC50 of 31±10 and 99±21ng/mL plasma for NET and SERT, respectively. At a clinically relevant dose (1.0-1.8mg/kg, approx. 300-600ng/mL plasma), ATX would occupy >90% of NET and >85% of SERT. This extrapolation assumes comparable free fraction of ATX in humans and non-human primates. CONCLUSION Our data suggests that ATX at clinically relevant doses greatly occupies both NET and SERT. Thus, therapeutic modes of ATX action for treatment of depression and ADHD may be more complex than selective blockade of NET.


Drug and Alcohol Dependence | 2014

Dopamine D3 receptor alterations in cocaine-dependent humans imaged with [11C](+)PHNO

David Matuskey; Jean-Dominique Gallezot; Brian Pittman; Wendol Williams; Jane Wanyiri; Edward Gaiser; Dianne E. Lee; Jonas Hannestad; Keunpoong Lim; Minq-Qiang Zheng; Shu-fei Lin; David Labaree; Marc N. Potenza; Richard E. Carson; Robert T. Malison; Yu-Shin Ding

BACKGROUND Evidence from animal models and postmortem human studies points to the importance of the dopamine D₃ receptor (D₃R) in cocaine dependence (CD). The objective of this pilot study was to use the D₃R-preferring radioligand [(11)C](+)PHNO to compare receptor availability in groups with and without CD. METHODS Ten medically healthy, non-treatment seeking CD subjects (mean age 41 ± 8) in early abstinence were compared to 10 healthy control (HC) subjects (mean age 41 ± 6) with no history of cocaine or illicit substance abuse. Binding potential (BPND), a measure of available receptors, was determined with parametric images, computed using the simplified reference tissue model (SRTM2) with the cerebellum as the reference region. RESULTS BPND in CD subjects was higher in D₃R-rich areas including the substantia nigra ((SN) 29%; P=0.03), hypothalamus (28%; P=0.02) and amygdala (35%; P=0.03). No between-group differences were observed in the striatum or pallidum. BPND values in the SN (r=+0.83; P=0.008) and pallidum (r=+0.67; P=0.03) correlated with years of cocaine use. CONCLUSIONS Between-group differences suggest an important role for dopaminergic transmission in the SN, hypothalamus and amygdala in CD. Such findings also highlight the potential relevance of D₃R as a medication development target in CD.

Collaboration


Dive into the Jean-Dominique Gallezot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Shin Ding

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge