Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Labaree is active.

Publication


Featured researches published by David Labaree.


Synapse | 2010

PET Imaging of the Effects of Age and Cocaine on the Norepinephrine Transporter in the Human Brain Using (S,S)-[11C]O-Methylreboxetine and HRRT

Yu-Shin Ding; Tarun Singhal; Beata Planeta-Wilson; Jean-Dominique Gallezot; Nabeel Nabulsi; David Labaree; Jim Ropchan; Shannan Henry; Wendol Williams; Richard E. Carson; Alexander Neumeister; Robert T. Malison

Objectives: The role of the norepinephrine transporter (NET) in cocaine dependence has never been demonstrated via in vivo imaging due to the lack of suitable NET radioligands. Here we report our preliminary studies evaluting the NET in individuals with cocaine dependence (COC) in comparison to healthy controls (HC) using (S,S)‐[11C]methylreboxetine ([11C]MRB), the most promising C‐11 labeled positron‐emission tomography (PET) radioligand for NET developed to date. Methods: Twenty two human volunteers (10 COC and 12 HC) underwent dynamic 11C‐MRB‐PET acquisition using a High Resolution Research Tomograph (HRRT). Binding potential (BPND) parametric images were computed using the simplified reference tissue model (SRTM2) with occipital cortex as reference region. BPND values were compared between the two groups. Results: Locus coeruleus (LC), hypothalamus, and pulvinar showed a significant inverse correlation with age among HC (age range = 25–54 years; P = 0.04, 0.009, 0.03 respectively). The BPND was significantly increased in thalamus (27%; P < 0.02) and dorsomedial thalamic nuclei (30%; P < 0.03) in COC as compared to HC. Upon age normalization, the upregulation of NET in COC also reached significance in LC (63%, P < 0.01) and pulvinar (55%, P < 0.02) regions. Conclusion: Our results suggest that (a) brain NET concentration declines with age in HC, and (b) there is a significant upregulation of NET in thalamus and dorsomedial thalamic nucleus in COC as compared to HC. Our results also suggest that the use of [11C]MRB and HRRT provides an effective strategy for studying alterations of the NET system in humans. Synapse 64:30–38, 2010.


The Journal of Neuroscience | 2014

Sex Differences in the Brain's Dopamine Signature of Cigarette Smoking

Kelly P. Cosgrove; Shuo Wang; Su Jin Kim; Erin McGovern; Nabeel Nabulsi; Hong Gao; David Labaree; Hemant D. Tagare; Jenna M. Sullivan; Evan D. Morris

Cigarette smoking is a major public health danger. Women and men smoke for different reasons and cessation treatments, such as the nicotine patch, are preferentially beneficial to men. The biological substrates of these sex differences are unknown. Earlier PET studies reported conflicting findings but were each hampered by experimental and/or analytical limitations. Our new image analysis technique, lp-ntPET (Normandin et al., 2012; Morris et al., 2013; Kim et al., 2014), has been optimized for capturing brief (lasting only minutes) and highly localized dopaminergic events in dynamic PET data. We coupled our analysis technique with high-resolution brain scanning and high-frequency motion correction to create the optimal experiment for capturing and characterizing the effects of smoking on the mesolimbic dopamine system in humans. Our main finding is that male smokers smoking in the PET scanner activate dopamine in the right ventral striatum during smoking but female smokers do not. This finding—men activating more ventrally than women—is consistent with the established notion that men smoke for the reinforcing drug effect of cigarettes whereas women smoke for other reasons, such as mood regulation and cue reactivity. lp-ntPET analysis produces a novel multidimensional endpoint: voxel-level temporal patterns of neurotransmitter release (“DA movies”) in individual subjects. By examining these endpoints quantitatively, we demonstrate that the timing of dopaminergic responses to cigarette smoking differs between men and women. Men respond consistently and rapidly in the ventral striatum whereas women respond faster in a discrete subregion of the dorsal putamen.


Molecular Imaging and Biology | 2011

Pancreatic beta cell mass PET imaging and quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in rodent models of diabetes.

Tarun Singhal; Yu-Shin Ding; David Weinzimmer; Marc D. Normandin; David Labaree; Jim Ropchan; Nabeel Nabulsi; Shu-fei Lin; Marc B. Skaddan; Walter C. Soeller; Yiyun Huang; Richard E. Carson; Judith L. Treadway; Gary W. Cline

PurposeThe aim of this study is to compare the utility of two positron emission tomography (PET) imaging ligands ((+)-[11C]dihydrotetrabenazine ([11C]DTBZ) and the fluoropropyl analog ([18F]FP-(+)-DTBZ)) that target islet β-cell vesicular monoamine transporter type II to measure pancreatic β-cell mass (BCM).Procedures[11C]DTBZ or [18F]FP-(+)-DTBZ was injected, and serial PET images were acquired in rat models of diabetes (streptozotocin-treated and Zucker diabetic fatty) and β-cell compensation (Zucker fatty). Radiotracer standardized uptake values (SUV) were correlated to pancreas insulin content measured biochemically and histomorphometrically.ResultsOn a group level, a positive correlation of [11C]DTBZ pancreatic SUV with pancreas insulin content and BCM was observed. In the STZ diabetic model, both [18F]FP-(+)-DTBZ and [11C]DTBZ correlated positively with BCM, although only ∼25% of uptake could be attributed to β-cell uptake. [18F]FP-(+)-DTBZ displacement studies indicate that there is a substantial fraction of specific binding that is not to pancreatic islet β cells.ConclusionsPET imaging with [18F]FP-(+)-DTBZ provides a noninvasive means to quantify insulin-positive BCM and may prove valuable as a diagnostic tool in assessing treatments to maintain or restore BCM.


Nuclear Medicine and Biology | 2011

Radiosynthesis and in vivo evaluation of [11C]MP-10 as a positron emission tomography radioligand for phosphodiesterase 10A

Christophe Plisson; Cristian Salinas; David Weinzimmer; David Labaree; Shu-fei Lin; Yu-Shin Ding; Steen Jakobsen; Paul W. Smith; Kawanishi Eiji; Richard E. Carson; Roger N. Gunn; Eugenii A. Rabiner

INTRODUCTION The aim of this study was to evaluate a newly reported positron emission tomography (PET) radioligand [(11)C]MP-10, a potent and selective inhibitor of the central phosphodiesterase 10A enzyme (PDE10A) in vivo, using PET. METHODS A procedure was developed for labeling MP-10 with carbon-11. [(11)C]MP-10 was evaluated in vivo both in the pig and baboon brain. RESULTS Alkylation of the corresponding desmethyl compound with [(11)C]methyl iodide produced [(11)C]MP-10 with good radiochemical yield and specific activity. PET studies in the pig showed that [(11)C]MP-10 rapidly entered the brain reaching peak tissue concentration at 1-2 min postadministration, followed by washout from the tissue. Administration of a selective PDE10A inhibitor reduced the binding in all brain regions to the levels of the cerebellum, demonstrating the saturability and selectivity of [(11)C]MP-10 binding. In the nonhuman primate, the brain tissue kinetics of [(11)C]MP-10 were slower, reaching peak tissue concentrations at 30-60 min postadministration. In both species, the observed rank order of regional brain signal was striatum>diencephalon>cortical regions=cerebellum, consistent with the known distribution and concentration of PDE10A. [(11)C]MP-10 brain kinetics were well described by a two-tissue compartment model, and estimates of total volume of distribution (V(T)) were obtained. Blocking studies with unlabeled MP-10 revealed the suitability of the cerebellum as a reference tissue and enabled the estimation of regional binding potential (BP(ND)) as the outcome measure of specific binding. Quantification of [(11)C]MP-10 binding using the simplified reference tissue model with cerebellar input function produced BP(ND) estimates consistent with those obtained by the two-tissue compartment model. CONCLUSION We demonstrated that [(11)C]MP-10 possesses good characteristics for the in vivo quantification of the PDE10A in the brain by PET.


Drug and Alcohol Dependence | 2014

Dopamine D3 receptor alterations in cocaine-dependent humans imaged with [11C](+)PHNO

David Matuskey; Jean-Dominique Gallezot; Brian Pittman; Wendol Williams; Jane Wanyiri; Edward Gaiser; Dianne E. Lee; Jonas Hannestad; Keunpoong Lim; Minq-Qiang Zheng; Shu-fei Lin; David Labaree; Marc N. Potenza; Richard E. Carson; Robert T. Malison; Yu-Shin Ding

BACKGROUND Evidence from animal models and postmortem human studies points to the importance of the dopamine D₃ receptor (D₃R) in cocaine dependence (CD). The objective of this pilot study was to use the D₃R-preferring radioligand [(11)C](+)PHNO to compare receptor availability in groups with and without CD. METHODS Ten medically healthy, non-treatment seeking CD subjects (mean age 41 ± 8) in early abstinence were compared to 10 healthy control (HC) subjects (mean age 41 ± 6) with no history of cocaine or illicit substance abuse. Binding potential (BPND), a measure of available receptors, was determined with parametric images, computed using the simplified reference tissue model (SRTM2) with the cerebellum as the reference region. RESULTS BPND in CD subjects was higher in D₃R-rich areas including the substantia nigra ((SN) 29%; P=0.03), hypothalamus (28%; P=0.02) and amygdala (35%; P=0.03). No between-group differences were observed in the striatum or pallidum. BPND values in the SN (r=+0.83; P=0.008) and pallidum (r=+0.67; P=0.03) correlated with years of cocaine use. CONCLUSIONS Between-group differences suggest an important role for dopaminergic transmission in the SN, hypothalamus and amygdala in CD. Such findings also highlight the potential relevance of D₃R as a medication development target in CD.


The Journal of Nuclear Medicine | 2014

Phosphodiesterase 10A PET Radioligand Development Program: From Pig to Human

Christophe Plisson; David Weinzimmer; Steen Jakobsen; Sridhar Natesan; Cristian Salinas; Shu-fei Lin; David Labaree; Ming-Qiang Zheng; Nabeel Nabulsi; Tiago Reis Marques; Shitij Kapur; Eiji Kawanishi; Takeaki Saijo; Roger N. Gunn; Richard E. Carson; Eugenii A. Rabiner

Four novel phosphodiesterase 10A (PDE10A) PET tracers have been synthesized, characterized in preclinical studies, and compared with the previously reported 11C-MP-10. Methods: On the basis of in vitro data, IMA102, IMA104, IMA107, and IMA106 were identified as potential PDE10A radioligand candidates and labeled with either 11C via N-methylation or with 18F through an SN2 reaction, in the case of IMA102. These candidates were compared with 11C-MP-10 in pilot in vivo studies in the pig brain. On the basis of these data, 11C-IMA106 and 11C-IMA107 were taken into further evaluation and comparison with 11C-MP-10 in the primate brain. Finally, the most promising radioligand candidate was progressed into human evaluation. Results: All 5 tracers were produced with good radiochemical yield and specific activity. All candidates readily entered the brain and demonstrated a heterogeneous distribution consistent with the known expression of PDE10A. Baseline PET studies in the pig and baboon showed that 11C-IMA107 and 11C-MP-10 displayed the most favorable tissue kinetics and imaging properties. The administration of selective PDE10A inhibitors reduced the binding of 11C-IMA107 and 11C-MP-10 in the PDE10A-rich brain regions, in a dose-dependent manner. In the nonhuman primate brain, the tissue kinetics of 11C-IMA107 and 11C-MP-10 were well described by a 2-tissue-compartment model, allowing robust estimates of the regional total volume of distribution. Blockade with unlabeled MP-10 confirmed the suitability of the cerebellum as a reference tissue and enabled the estimation of regional binding potential as the outcome measure of specific binding. Conclusion: 11C-IMA107 was identified as the ligand with the highest binding potential while still possessing reversible kinetics. The first human administration of 11C-IMA107 has demonstrated the expected regional distribution and suitably fast kinetics, indicating that 11C-IMA107 will be a useful tool for the investigation of PDE10A status in the living human brain.


Journal of Cerebral Blood Flow and Metabolism | 2013

Kinetic Analysis of the Metabotropic Glutamate Subtype 5 Tracer [18F]FPEB in Bolus and Bolus-Plus-Constant-Infusion Studies in Humans

Jenna M. Sullivan; Keunpoong Lim; David Labaree; Shu-fei Lin; Timothy J. McCarthy; John Seibyl; Gilles Tamagnan; Yiyun Huang; Richard E. Carson; Yu-Shin Ding; Evan D. Morris

[18F]FPEB is a positron emission tomography tracer which, in preclinical studies, has shown high specificity and selectivity toward the metabotropic glutamate receptor 5 (mGluR5). It possesses the potential to be used in human studies to evaluate mGluR5 function in a range of neuropsychiatric disorders, such as anxiety and Fragile X syndrome. To define optimal scan methodology, healthy human subjects were scanned for 6 hours following either a bolus injection (n = 5) or bolus-plus-constant-infusion (n = 5) of [18F]FPEB. Arterial blood samples were collected and parent fraction measured by high-performance liquid chromatography (HPLC) to determine the metabolite-corrected plasma input function. Time activity curves were extracted from 13 regions and fitted by various models to estimate VT and BPND. [18F]FPEB was well fitted by the two-tissue compartment model, MA1 (t∗ = 30), and MRTM (using cerebellum white matter as a reference). Highest VT values were observed in the anterior cingulate and caudate, and lowest VT values were observed in the cerebellum and pallidum. For kinetic modeling studies, VT and BPND were estimated from bolus or bolus-plus-constant-infusion scans as short as 90 minutes. Bolus-plus-constant-infusion of [18F]FPEB reduced intersubject variability in VT and allowed equilibrium analysis to be completed with a 30-minute scan, acquired 90–120 minutes after the start of injection.


Synapse | 2013

Studies of the Metabotropic Glutamate Receptor 5 Radioligand [11C]ABP688 with N-acetylcysteine Challenge in Rhesus Monkeys

Christine M. Sandiego; Nabeel Nabulsi; Shu-fei Lin; David Labaree; Soheila Najafzadeh; Yiyun Huang; Kelly P. Cosgrove; Richard E. Carson

Detecting changes in receptor binding at the metabotropic glutamate receptor 5 (mGluR5) with the PET allosteric antagonist, [11C]ABP688, may be valuable for studying dysfunctional glutamate transmission associated with psychiatric illnesses. This study was designed to validate the findings of a recent pilot study in baboons which reported a significant global decrease from baseline [11C]ABP688 binding after increasing endogenous glutamate with 50 mg/kg N‐acetylcysteine (NAC), with no change from test to retest. In rhesus monkeys (n = 5), paired [11C]ABP688 scans were performed on the same day on the Focus‐220 as follows (n = 3 per group): test‐retest, baseline‐NAC (50 mg/kg), and baseline‐NAC (100 mg/kg). Multiple modeling methods were evaluated for kinetic analysis to estimate the total volume of distribution (VT) and non‐displaceable binding potential (BPND) in regions‐of‐interest (ROIs), with the cerebellum gray matter (CGM) as the reference region. There was an increasing trend from test to retest BPND across ROIs (13%). NAC (50 mg/kg and 100 mg/kg) increased VT (5% and 19%) and decreased BPND (3% and 10%), respectively, significant only for VT in ROIs at the 100 mg/kg dose. High intersubject variability in BPND was comparable to that reported in the baboon study. However, interpretability of BPND is difficult with increases in VT in the CGM reference region at the higher NAC dose. Additionally, the net reduction in BPND from the baseline‐NAC scans may be obscured due to observed increases in test‐retest BPND. Thus, we did not strictly replicate the findings in the baboon study based on BPND. Synapse 67:489–501, 2013.


Nuclear Medicine and Biology | 2001

[7α-18F]fluoro-17α-methyl-5α-dihydrotestosterone: a ligand for androgen receptor-mediated imaging of prostate cancer

Pradeep K. Garg; David Labaree; Robert M. Hoyte; Richard B. Hochberg

Abstract We have synthesized a 18 F-labeled androgen, [7α- 18 F]fluoro-17α-methyl-5α-dihydrotestosterone, in a no-carrier-added radiosynthesis by exchange of 18 F- (tetrabutylammonium fluoride) with the 7β-tosyloxy of 17α-methyl-5α-dihydrotestosterone. The nonradioactive steroid binds with high affinity and specificity to the androgen receptor and binds poorly, if at all, to other steroid receptors and plasma sex hormone binding globulin. The 7α- 18 F-androgen concentrates markedly in the prostate of rats by an androgen receptor-dependent mechanism. It is likely that [7α- 18 F]fluoro-17α-methyl-5α-dihydrotestosterone will be an excellent positron emission tomography imaging agent for prostate cancer.


Journal of Cerebral Blood Flow and Metabolism | 2015

Imaging the Cannabinoid CB1 Receptor in Humans with [11C] OMAR: Assessment of Kinetic Analysis Methods, Test–Retest Reproducibility, and Gender Differences

Marc D. Normandin; Ming-Qiang Zheng; Kuo-Shyan Lin; N. Scott Mason; Shu-fei Lin; Jim Ropchan; David Labaree; Shannan Henry; Wendol Williams; Richard E. Carson; Alexander Neumeister; Yiyun Huang

The Radiotracer [11C]OMAR was developed for positron emission tomography (PET) imaging of cannabinoid type-1 receptors (CB1R). The objectives of the present study were to evaluate kinetic analysis methods, determine test–retest reliability, and assess gender differences in receptor availability. Dynamic PET data were acquired in 10 human subjects, and analyzed with one-tissue (1T) and two-tissue (2T) compartment models and by the Logan and multilinear analysis (MA1) methods to estimate regional volume of distribution (VT). The 2T model inclusive of a vascular component (2TV) and MA1 were the preferred techniques. Test–retest reliability of VT was good (mean absolute deviation ~ 9%; intraclass correlation coefficient ~ 0.7). Tracer parent fraction in plasma was lower in women (P < 0.0001). Cerebral uptake normalized by body weight and injected dose was higher in men by 17% (P < 0.0001), but VT was significantly greater in women by 23% (P < 0.0001). These findings show that [11C]OMAR binding can be reliably quantified by the 2T model or MA1 method and demonstrate the utility of this tracer for in vivo imaging of CB1R. In addition, results from the present study indicate that gender difference in receptor binding should be taken into consideration when [11C]OMAR is used to quantify CB1R availability in neuropsychiatric disorders.

Collaboration


Dive into the David Labaree's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge