Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-François Lefebvre is active.

Publication


Featured researches published by Jean-François Lefebvre.


Molecular Biology and Evolution | 2011

An X-linked haplotype of Neandertal origin is present among all non-African populations

Vania Yotova; Jean-François Lefebvre; Claudia Moreau; Elias Gbeha; Kristine Hovhannesyan; Stephane Bourgeois; Sandra Bédarida; Luísa Azevedo; António Amorim; Tamara Sarkisian; Patrice H. Avogbe; Nicodème W. Chabi; Mamoudou H. Dicko; Emile Amouzou; Ambaliou Sanni; June Roberts-Thomson; Barry Boettcher; Rodney J. Scott; Damian Labuda

Recent work on the Neandertal genome has raised the possibility of admixture between Neandertals and the expanding population of Homo sapiens who left Africa between 80 and 50 Kya (thousand years ago) to colonize the rest of the world. Here, we provide evidence of a notable presence (9% overall) of a Neandertal-derived X chromosome segment among all contemporary human populations outside Africa. Our analysis of 6,092 X-chromosomes from all inhabited continents supports earlier contentions that a mosaic of lineages of different time depths and different geographic provenance could have contributed to the genetic constitution of modern humans. It indicates a very early admixture between expanding African migrants and Neandertals prior to or very early on the route of the out-of-Africa expansion that led to the successful colonization of the planet.


American Journal of Human Genetics | 2010

Female-to-Male Breeding Ratio in Modern Humans?an Analysis Based on Historical Recombinations.

Damian Labuda; Jean-François Lefebvre; Philippe Nadeau; Marie-Hélène Roy-Gagnon

Was the past genetic contribution of women and men to the current human population equal? Was polygyny (excess of breeding women) present among hominid lineages? We addressed these questions by measuring the ratio of population recombination rates between the X chromosome and the autosomes, rho(X)/rho(A). The X chromosome recombines only in female meiosis, whereas autosomes undergo crossovers in both sexes; thus, rho(X)/rho(A) reflects the female-to-male breeding ratio, beta. We estimated beta from rho(X)/rho(A) inferred from genomic diversity data and calibrated with recombination rates derived from pedigree data. For the HapMap populations, we obtained beta of 1.4 in the Yoruba from West Africa, 1.3 in Europeans, and 1.1 in East Asian samples. These values are consistent with a high prevalence of monogamy and limited polygyny in human populations. More mutations occur during male meiosis as compared to female meiosis at the rate ratio referred to as alpha. We show that at alpha not equal 1, the divergence rates and genetic diversities of the X chromosome relative to the autosomes are complex functions of both alpha and beta, making their independent estimation difficult. Because our estimator of beta does not require any knowledge of the mutation rates, our approach should allow us to dissociate the effects of alpha and beta on the genetic diversity and divergence rate ratios of the sex chromosomes to the autosomes.


research in computational molecular biology | 2004

The distribution of inversion lengths in bacteria

David Sankoff; Jean-François Lefebvre; Elisabeth R. M. Tillier; Adrian Maler; Nadia El-Mabrouk

The distribution of the lengths of genomic segments inverted during the evolutionary divergence of two species cannot be inferred directly from the output of genome rearrangement algorithms, due to the rapid loss of signal from all but the shortest inversions. The number of short inversions produced by these algorithms, however, particularly those involving a single gene, is relatively reliable. To gain some insight into the shape of the inversion-length distribution we first apply a genome rearrangement algorithm to each of 32 pairs of bacterial genomes. For each pair we then simulate their divergence using a test distribution to generate the inversions and use the simulated genomes as input to the reconstruction algorithm. It is the comparison between the algorithm output for the real pair of genomes and the simulated pair which is used to assess the test distribution. We find that simulations based on the exponential distribution cannot provide a good fit, but that simulations based on a gamma distribution can account for both single-gene inversions and short inversions involving at most 20 genes, and we conclude that the shape of latter distribution corresponds well to the true distribution at least for small inversion lengths.


European Journal of Human Genetics | 2014

Genome-wide patterns of identity-by-descent sharing in the French Canadian founder population.

Héloïse Gauvin; Claudia Moreau; Jean-François Lefebvre; Catherine Laprise; Hélène Vézina; Damian Labuda; Marie-Hélène Roy-Gagnon

In genetics the ability to accurately describe the familial relationships among a group of individuals can be very useful. Recent statistical tools succeeded in assessing the degree of relatedness up to 6–7 generations with good power using dense genome-wide single-nucleotide polymorphism data to estimate the extent of identity-by-descent (IBD) sharing. It is therefore important to describe genome-wide patterns of IBD sharing for more remote and complex relatedness between individuals, such as that observed in a founder population like Quebec, Canada. Taking advantage of the extended genealogical records of the French Canadian founder population, we first compared different tools to identify regions of IBD in order to best describe genome-wide IBD sharing and its correlation with genealogical characteristics. Results showed that the extent of IBD sharing identified with FastIBD correlates best with relatedness measured using genealogical data. Total length of IBD sharing explained 85% of the genealogical kinship’s variance. In addition, we observed significantly higher sharing in pairs of individuals with at least one inbred ancestor compared with those without any. Furthermore, patterns of IBD sharing and average sharing were different across regional populations, consistent with the settlement history of Quebec. Our results suggest that, as expected, the complex relatedness present in founder populations is reflected in patterns of IBD sharing. Using these patterns, it is thus possible to gain insight on the types of distant relationships in a sample from a founder population like Quebec.


BMC Bioinformatics | 2010

Haplotype allelic classes for detecting ongoing positive selection

Julie Hussin; Philippe Nadeau; Jean-François Lefebvre; Damian Labuda

BackgroundNatural selection eliminates detrimental and favors advantageous phenotypes. This process leaves characteristic signatures in underlying genomic segments that can be recognized through deviations in allelic or haplotypic frequency spectra. To provide an identifiable signature of recent positive selection that can be detected by comparison with the background distribution, we introduced a new way of looking at genomic polymorphisms: haplotype allelic classes.ResultsThe model combines segregating sites and haplotypic information in order to reveal useful data characteristics. We developed a summary statistic, Svd, to compare the distribution of the haplotypes carrying the selected allele with the distribution of the remaining ones. Coalescence simulations are used to study the distributions under standard population models assuming neutrality, demographic scenarios and selection models. To test, in practice, haplotype allelic class performance and the derived statistic in capturing deviation from neutrality due to positive selection, we analyzed haplotypic variation in detail in the locus of lactase persistence in the three HapMap Phase II populations.ConclusionsWe showed that the Svd statistic is less sensitive than other tests to confounding factors such as demography or recombination. Our approach succeeds in identifying candidate loci, such as the lactase-persistence locus, as targets of strong positive selection and provides a new tool complementary to other tests to study natural selection in genomic data.


PLOS ONE | 2013

Native American Admixture in the Quebec Founder Population

Claudia Moreau; Jean-François Lefebvre; Michèle Jomphe; Claude Bhérer; Andres Ruiz-Linares; Hélène Vézina; Marie-Hélène Roy-Gagnon; Damian Labuda

For years, studies of founder populations and genetic isolates represented the mainstream of genetic mapping in the effort to target genetic defects causing Mendelian disorders. The genetic homogeneity of such populations as well as relatively homogeneous environmental exposures were also seen as primary advantages in studies of genetic susceptibility loci that underlie complex diseases. European colonization of the St-Lawrence Valley by a small number of settlers, mainly from France, resulted in a founder effect reflected by the appearance of a number of population-specific disease-causing mutations in Quebec. The purported genetic homogeneity of this population was recently challenged by genealogical and genetic analyses. We studied one of the contributing factors to genetic heterogeneity, early Native American admixture that was never investigated in this population before. Consistent admixture estimates, in the order of one per cent, were obtained from genome-wide autosomal data using the ADMIXTURE and HAPMIX software, as well as with the fastIBD software evaluating the degree of the identity-by-descent between Quebec individuals and Native American populations. These genomic results correlated well with the genealogical estimates. Correlations are imperfect most likely because of incomplete records of Native founders’ origin in genealogical data. Although the overall degree of admixture is modest, it contributed to the enrichment of the population diversity and to its demographic stratification. Because admixture greatly varies among regions of Quebec and among individuals, it could have significantly affected the homogeneity of the population, which is of importance in mapping studies, especially when rare genetic susceptibility variants are in play.


Frontiers in Immunology | 2015

A Comparison of Statistical Methods for the Discovery of Genetic Risk Factors Using Longitudinal Family Study Designs.

Kelly M. Burkett; Marie-Hélène Roy-Gagnon; Jean-François Lefebvre; Cheng Wang; Bénédicte Fontaine-Bisson; Lise Dubois

The etiology of immune-related diseases or traits is often complex, involving many genetic and environmental factors and their interactions. While methodological approaches focusing on an outcome measured at one time point have succeeded in identifying genetic factors involved in immune-related traits, they fail to capture complex disease mechanisms that fluctuate over time. It is increasingly recognized that longitudinal studies, where an outcome is measured at multiple time points, have great potential to shed light on complex disease mechanisms involving genetic factors. However, longitudinal data require specialized statistical methods, especially in family studies where multiple sources of correlation in the data must be modeled. Using simulated data with known genetic effects, we examined the performance of different analytical methods for investigating associations between genetic factors and longitudinal phenotypes in twin data. The simulations were modeled on data from the Québec Newborn Twin Study, an ongoing population-based longitudinal study of twin births with multiple phenotypes, such as cortisol levels and body mass index, collected multiple times in infancy and early childhood and with sequencing data on immune-related genes and pathways. We compared approaches that we classify as (1) family-based methods applied to summaries of the observations over time, (2) longitudinal-based methods with simplifications of the familial correlation, and (3) Bayesian family-based method with simplifications of the temporal correlation. We found that for estimation of the genetic main and interaction effects, all methods gave estimates close to the true values and had similar power. If heritability estimation is desired, approaches of type (1) also provide heritability estimates close to the true value. Our work shows that the simpler approaches are likely adequate to detect genetic effects; however, interpretation of these effects is more challenging.


PLOS ONE | 2013

X-linked MTMR8 diversity and evolutionary history of sub-Saharan populations.

Damian Labuda; Vania Yotova; Jean-François Lefebvre; Claudia Moreau; Gerd Utermann; Scott M. Williams

The genetic diversity within an 11 kb segment of the MTMR8 gene in a sample of 111 sub-Saharan and 49 non-African X chromosomes was investigated to assess the early evolutionary history of sub-Saharan Africans and the out-of-Africa expansion. The analyses revealed a complex genetic structure of the Africans that contributed to the emergence of modern humans. We observed partitioning of two thirds of old lineages among southern, west/central and east African populations indicating ancient population stratification predating the out of Africa migration. Age estimates of these lineages, older than coalescence times of uniparentally inherited markers, raise the question whether contemporary humans originated from a single population or as an amalgamation of different populations separated by years of independent evolution, thus suggesting a greater antiquity of our species than generally assumed. While the oldest sub-Saharan lineages, ∼500 thousand years, are found among Khoe-San from southern-Africa, a distinct haplotype found among Biaka is likely due to admixture from an even older population. An East African population that gave rise to non-Africans underwent a selective sweep affecting the subcentromeric region where MTMR8 is located. This and similar sweeps in four other regions of the X chromosome, documented in the literature, effectively reduced genetic diversity of non-African chromosomes and therefore may have exacerbated the effect of the demographic bottleneck usually ascribed to the out of Africa migration. Our data is suggestive, however, that a bottleneck, occurred in Africa before range expansion.


intelligent systems in molecular biology | 2003

Detection and validation of single gene inversions

Jean-François Lefebvre; Nadia El-Mabrouk; Elisabeth R. M. Tillier; David Sankoff


workshop on algorithms in bioinformatics | 2002

Exploring the Set of All Minimal Sequences of Reversals - An Application to Test the Replication-Directed Reversal Hypothesis

Yasmine Ajana; Jean-François Lefebvre; Elisabeth R. M. Tillier; Nadia El-Mabrouk

Collaboration


Dive into the Jean-François Lefebvre's collaboration.

Top Co-Authors

Avatar

Damian Labuda

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Claudia Moreau

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vania Yotova

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hélène Vézina

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Hudson

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Daniel Sinnett

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge