Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Hudson is active.

Publication


Featured researches published by Thomas J. Hudson.


Nature | 2007

A genome-wide association study identifies novel risk loci for type 2 diabetes

Robert Sladek; Ghislain Rocheleau; Johan Rung; Christian Dina; Lishuang Shen; David Serre; Philippe Boutin; Daniel Vincent; Alexandre Belisle; Samy Hadjadj; Beverley Balkau; Barbara Heude; Guillaume Charpentier; Thomas J. Hudson; Alexandre Montpetit; Alexey V. Pshezhetsky; Marc Prentki; Barry I. Posner; David J. Balding; David Meyre; Constantin Polychronakos; Philippe Froguel

Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case–control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing β-cells, and two linkage disequilibrium blocks that contain genes potentially involved in β-cell development or function (IDE–KIF11–HHEX and EXT2–ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.


Nature Genetics | 2000

The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes.

David Altshuler; Joel N. Hirschhorn; Mia Klannemark; Cecilia M. Lindgren; Marie-Claude Vohl; James Nemesh; Charles R. Lane; Stephen F. Schaffner; Stacey Bolk; Carl Brewer; Tiinamaija Tuomi; Daniel Gaudet; Thomas J. Hudson; Mark J. Daly; Leif Groop; Eric S. Lander

Genetic association studies are viewed as problematic and plagued by irreproducibility. Many associations have been reported for type 2 diabetes, but none have been confirmed in multiple samples and with comprehensive controls. We evaluated 16 published genetic associations to type 2 diabetes and related sub-phenotypes using a family-based design to control for population stratification, and replication samples to increase power. We were able to confirm only one association, that of the common Pro12Ala polymorphism in peroxisome proliferator-activated receptor-γ (PPARγ) with type 2 diabetes. By analysing over 3,000 individuals, we found a modest (1.25-fold) but significant (P=0.002) increase in diabetes risk associated with the more common proline allele (∼85% frequency). Moreover, our results resolve a controversy about common variation in PPARγ. An initial study found a threefold effect, but four of five subsequent publications failed to confirm the association. All six studies are consistent with the odds ratio we describe. The data implicate inherited variation in PPARγ in the pathogenesis of type 2 diabetes. Because the risk allele occurs at such high frequency, its modest effect translates into a large population attributable risk—influencing as much as 25% of type 2 diabetes in the general population.


Nature Genetics | 2001

High-resolution haplotype structure in the human genome.

Mark J. Daly; John D. Rioux; Stephen F. Schaffner; Thomas J. Hudson; Eric S. Lander

Linkage disequilibrium (LD) analysis is traditionally based on individual genetic markers and often yields an erratic, non-monotonic picture, because the power to detect allelic associations depends on specific properties of each marker, such as frequency and population history. Ideally, LD analysis should be based directly on the underlying haplotype structure of the human genome, but this structure has remained poorly understood. Here we report a high-resolution analysis of the haplotype structure across 500 kilobases on chromosome 5q31 using 103 single-nucleotide polymorphisms (SNPs) in a European-derived population. The results show a picture of discrete haplotype blocks (of tens to hundreds of kilobases), each with limited diversity punctuated by apparent sites of recombination. In addition, we develop an analytical model for LD mapping based on such haplotype blocks. If our observed structure is general (and published data suggest that it may be), it offers a coherent framework for creating a haplotype map of the human genome.


Nature Genetics | 2001

Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease

John D. Rioux; Mark J. Daly; Mark S. Silverberg; Kerstin Lindblad; Hillary Steinhart; Zane Cohen; Terrye A. Delmonte; Kerry Kocher; Katie Miller; Sheila Guschwan; Edward J. Kulbokas; Sinéad B. O'Leary; Ellen Winchester; Ken Dewar; Todd Green; Valerie Stone; Christine Chow; Albert Cohen; Diane Langelier; Gilles Lapointe; Daniel Gaudet; Janet Faith; Nancy Branco; Shelley B. Bull; Robin S. McLeod; Anne M. Griffiths; Alain Bitton; Gordon R. Greenberg; Eric S. Lander; Katherine A. Siminovitch

Linkage disequilibrium (LD) mapping provides a powerful method for fine-structure localization of rare disease genes, but has not yet been widely applied to common disease. We sought to design a systematic approach for LD mapping and apply it to the localization of a gene (IBD5) conferring susceptibility to Crohn disease. The key issues are: (i) to detect a significant LD signal (ii) to rigorously bound the critical region and (iii) to identify the causal genetic variant within this region. We previously mapped the IBD5 locus to a large region spanning 18 cM of chromosome 5q31 (P<10−4). Using dense genetic maps of microsatellite markers and single-nucleotide polymorphisms (SNPs) across the entire region, we found strong evidence of LD. We bound the region to a common haplotype spanning 250 kb that shows strong association with the disease (P<2×10−7) and contains the cytokine gene cluster. This finding provides overwhelming evidence that a specific common haplotype of the cytokine region in 5q31 confers susceptibility to Crohn disease. However, genetic evidence alone is not sufficient to identify the causal mutation within this region, as strong LD across the region results in multiple SNPs having equivalent genetic evidence—each consistent with the expected properties of the IBD5 locus. These results have important implications for Crohn disease in particular and LD mapping in general.


Science | 1995

An STS-Based Map of the Human Genome

Thomas J. Hudson; Lincoln D. Stein; Sebastian S. Gerety; Junli Ma; Andrew B. Castle; James Silva; Donna K. Slonim; Rafael Baptista; Shu-Hua Xu; Xintong Hu; Angela M. E. Colbert; Carl Rosenberg; Mary Pat Reeve-Daly; Steve Rozen; Lester Hui; Xiaoyun Wu; Christina Vestergaard; Kimberly M. Wilson; Jane S. Bae; Shanak Maitra; Soula Ganiatsas; Cheryl A. Evans; Margaret M. DeAngelis; Kimberly A. Ingalls; Robert Nahf; Lloyd T. Horton; Michele Oskin Anderson; Alville Collymore; Wenjuan Ye; Vardouhie Kouyoumjian

A physical map has been constructed of the human genome containing 15,086 sequence-tagged sites (STSs), with an average spacing of 199 kilobases. The project involved assembly of a radiation hybrid map of the human genome containing 6193 loci and incorporated a genetic linkage map of the human genome containing 5264 loci. This information was combined with the results of STS-content screening of 10,850 loci against a yeast artificial chromosome library to produce an integrated map, anchored by the radiation hybrid and genetic maps. The map provides radiation hybrid coverage of 99 percent and physical coverage of 94 percent of the human genome. The map also represents an early step in an international project to generate a transcript map of the human genome, with more than 3235 expressed sequences localized. The STSs in the map provide a scaffold for initiating large-scale sequencing of the human genome.


Nature Genetics | 2007

Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24

Brent W. Zanke; Celia M. T. Greenwood; Jagadish Rangrej; Rafal Kustra; Albert Tenesa; Susan M. Farrington; James Prendergast; Sylviane Olschwang; Theodore Chiang; Edgar Crowdy; Vincent Ferretti; Philippe Laflamme; Saravanan Sundararajan; Stéphanie Roumy; Jean François Olivier; Frédérick Robidoux; Robert Sladek; Alexandre Montpetit; Peter J. Campbell; Stéphane Bézieau; Anne Marie O'Shea; George Zogopoulos; Michelle Cotterchio; Polly A. Newcomb; John R. McLaughlin; Ban Younghusband; Roger C. Green; Jane Green; Mary Porteous; Harry Campbell

Using a multistage genetic association approach comprising 7,480 affected individuals and 7,779 controls, we identified markers in chromosomal region 8q24 associated with colorectal cancer. In stage 1, we genotyped 99,632 SNPs in 1,257 affected individuals and 1,336 controls from Ontario. In stages 2–4, we performed serial replication studies using 4,024 affected individuals and 4,042 controls from Seattle, Newfoundland and Scotland. We identified one locus on chromosome 8q24 and another on 9p24 having combined odds ratios (OR) for stages 1–4 of 1.18 (trend; P = 1.41 × 10−8) and 1.14 (trend; P = 1.32 × 10−5), respectively. Additional analyses in 2,199 affected individuals and 2,401 controls from France and Europe supported the association at the 8q24 locus (OR = 1.16, trend; 95% confidence interval (c.i.): 1.07–1.26; P = 5.05 × 10−4). A summary across all seven studies at the 8q24 locus was highly significant (OR = 1.17, c.i.: 1.12–1.23; P = 3.16 × 10−11). This locus has also been implicated in prostate cancer.


Nature | 2014

Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia

Liran I. Shlush; Sasan Zandi; Amanda Mitchell; Weihsu Claire Chen; Joseph Brandwein; Vikas Gupta; James A. Kennedy; Aaron D. Schimmer; Andre C. Schuh; Karen Yee; Jessica McLeod; Monica Doedens; Jessie J. F. Medeiros; Rene Marke; Hyeoung Joon Kim; Kwon Lee; John D. McPherson; Thomas J. Hudson; Andrew M.K. Brown; Fouad Yousif; Quang M. Trinh; Lincoln Stein; Mark D. Minden; Jean C.Y. Wang; John E. Dick

In acute myeloid leukaemia (AML), the cell of origin, nature and biological consequences of initiating lesions, and order of subsequent mutations remain poorly understood, as AML is typically diagnosed without observation of a pre-leukaemic phase. Here, highly purified haematopoietic stem cells (HSCs), progenitor and mature cell fractions from the blood of AML patients were found to contain recurrent DNMT3A mutations (DNMT3Amut) at high allele frequency, but without coincident NPM1 mutations (NPM1c) present in AML blasts. DNMT3Amut-bearing HSCs showed a multilineage repopulation advantage over non-mutated HSCs in xenografts, establishing their identity as pre-leukaemic HSCs. Pre-leukaemic HSCs were found in remission samples, indicating that they survive chemotherapy. Therefore DNMT3Amut arises early in AML evolution, probably in HSCs, leading to a clonally expanded pool of pre-leukaemic HSCs from which AML evolves. Our findings provide a paradigm for the detection and treatment of pre-leukaemic clones before the acquisition of additional genetic lesions engenders greater therapeutic resistance.


Nature Genetics | 2008

Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21.

Albert Tenesa; Susan M. Farrington; James Prendergast; Mary Porteous; Marion Walker; Naila Haq; Rebecca A. Barnetson; Evropi Theodoratou; Roseanne Cetnarskyj; Nicola Cartwright; Colin A. Semple; Andy Clark; Fiona Reid; Lorna Smith; Thibaud Koessler; Paul Pharoah; Stephan Buch; Clemens Schafmayer; Jürgen Tepel; Stefan Schreiber; Henry Völzke; Carsten Schmidt; Jochen Hampe; Jenny Chang-Claude; Michael Hoffmeister; Hermann Brenner; Stefan Wilkening; Federico Canzian; Gabriel Capellá; Victor Moreno

In a genome-wide association study to identify loci associated with colorectal cancer (CRC) risk, we genotyped 555,510 SNPs in 1,012 early-onset Scottish CRC cases and 1,012 controls (phase 1). In phase 2, we genotyped the 15,008 highest-ranked SNPs in 2,057 Scottish cases and 2,111 controls. We then genotyped the five highest-ranked SNPs from the joint phase 1 and 2 analysis in 14,500 cases and 13,294 controls from seven populations, and identified a previously unreported association, rs3802842 on 11q23 (OR = 1.1; P = 5.8 × 10−10), showing population differences in risk. We also replicated and fine-mapped associations at 8q24 (rs7014346; OR = 1.19; P = 8.6 × 10−26) and 18q21 (rs4939827; OR = 1.2; P = 7.8 × 10−28). Risk was greater for rectal than for colon cancer for rs3802842 (P < 0.008) and rs4939827 (P < 0.009). Carrying all six possible risk alleles yielded OR = 2.6 (95% CI = 1.75–3.89) for CRC. These findings extend our understanding of the role of common genetic variation in CRC etiology.


Epigenetics | 2013

Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray

Yi-an Chen; Mathieu Lemire; Sanaa Choufani; Darci T. Butcher; Daria Grafodatskaya; Brent W. Zanke; Steven Gallinger; Thomas J. Hudson; Rosanna Weksberg

DNA methylation, an important type of epigenetic modification in humans, participates in crucial cellular processes, such as embryonic development, X-inactivation, genomic imprinting and chromosome stability. Several platforms have been developed to study genome-wide DNA methylation. Many investigators in the field have chosen the Illumina Infinium HumanMethylation microarray for its ability to reliably assess DNA methylation following sodium bisulfite conversion. Here, we analyzed methylation profiles of 489 adult males and 357 adult females generated by the Infinium HumanMethylation450 microarray. Among the autosomal CpG sites that displayed significant methylation differences between the two sexes, we observed a significant enrichment of cross-reactive probes co-hybridizing to the sex chromosomes with more than 94% sequence identity. This could lead investigators to mistakenly infer the existence of significant autosomal sex-associated methylation. Using sequence identity cutoffs derived from the sex methylation analysis, we concluded that 6% of the array probes can potentially generate spurious signals because of co-hybridization to alternate genomic sequences highly homologous to the intended targets. Additionally, we discovered probes targeting polymorphic CpGs that overlapped SNPs. The methylation levels detected by these probes are simply the reflection of underlying genetic polymorphisms but could be misinterpreted as true signals. The existence of probes that are cross-reactive or of target polymorphic CpGs in the Illumina HumanMethylation microarrays can confound data obtained from such microarrays. Therefore, investigators should exercise caution when significant biological associations are found using these array platforms. A list of all cross-reactive probes and polymorphic CpGs identified by us are annotated in this paper.


American Journal of Human Genetics | 2000

Genomewide Search in Canadian Families with Inflammatory Bowel Disease Reveals Two Novel Susceptibility Loci

John D. Rioux; Mark S. Silverberg; Mark J. Daly; A. Hillary Steinhart; Robin S. McLeod; Anne M. Griffiths; Todd Green; Thomas Brettin; Valerie Stone; Shelley B. Bull; Alain Bitton; C. Noel Williams; Gordon R. Greenberg; Zane Cohen; Eric S. Lander; Thomas J. Hudson; Katherine A. Siminovitch

The chronic inflammatory bowel diseases (IBDs)-Crohn disease (CD) and ulcerative colitis (UC)-are idiopathic, inflammatory disorders of the gastrointestinal tract. These conditions have a peak incidence in early adulthood and a combined prevalence of approximately 100-200/100,000. Although the etiology of IBD is multifactorial, a significant genetic contribution to disease susceptibility is implied by epidemiological data revealing a sibling risk of approximately 35-fold for CD and approximately 15-fold for UC. To elucidate the genetic basis for these disorders, we undertook a genomewide scan in 158 Canadian sib-pair families and identified three regions of suggestive linkage (3p, 5q31-33, and 6p) and one region of significant linkage to 19p13 (LOD score 4.6). Higher-density mapping in the 5q31-q33 region revealed a locus of genomewide significance (LOD score 3.9) that contributes to CD susceptibility in families with early-onset disease. Both of these genomic regions contain numerous genes that are important to the immune and inflammatory systems and that provide good targets for future candidate-gene studies.

Collaboration


Dive into the Thomas J. Hudson's collaboration.

Top Co-Authors

Avatar

Mathieu Lemire

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Rioux

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Daniel Gaudet

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brent W. Zanke

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Sladek

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge