Jean-Frédéric Dubern
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Frédéric Dubern.
Analytical and Bioanalytical Chemistry | 2011
Catharine A. Ortori; Jean-Frédéric Dubern; Siri Ram Chhabra; Miguel Cámara; Kim R. Hardie; Paul Williams; David A. Barrett
An LC-MS/MS method, using positive mode electrospray ionization, for the simultaneous, quantitative and targeted profiling of the N-acyl-l-homoserine lactone (AHL) and 2-alkyl 4-(1H)-quinolone (AQ) families of bacterial quorum-sensing signaling molecules (QSSMs) is presented. This LC-MS/MS technique was applied to determine the relative molar ratios of AHLs and AQs produced by Pseudomonas aeruginosa and the consequences of mutating individual or multiple QSSM synthase genes (lasI, rhlI, pqsA) on AHL and AQ profiles and concentrations. The AHL profile of P. aeruginosa was dominated by N-butanoyl-l-homoserine lactone (C4-HSL) with lesser concentrations of N-hexanoyl-l-homoserine lactone (C6-HSL) and 3-oxo-substituted longer chain AHLs including N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL). The AQ profile of P. aeruginosa comprised the C7 and C9 long alkyl chain AQs including 2-heptyl-4-hydroxyquinoline (HHQ), 2-nonyl-4-hydroxyquinoline, the “pseudomonas quinolone signal” (2-heptyl-3-hydroxy-4-quinolone) and the N-oxides, 2-heptyl-4-hydroxyquinoline N-oxide and 2-nonyl-4-hydroxyquinoline N-oxide. Application of the method showed significant effects of growth medium type on the ratio and the nature of the QSSMs synthesized and the dramatic effect of single, double and triple mutations in the P. aeruginosa QS synthase genes. The LC-MS/MS methodology is applicable in organisms where either or both AHL and AQ QSSMs are produced and can provide comprehensive profiles and concentrations from a single sample.
Journal of Bacteriology | 2006
Jean-Frédéric Dubern; Ben J. J. Lugtenberg; Guido V. Bloemberg
Pseudomonas putida strain PCL1445 produces two cyclic lipopeptides, putisolvin I and putisolvin II, which possess surface tension-reducing abilities and are able to inhibit biofilm formation and to break down existing biofilms of several Pseudomonas spp., including P. aeruginosa. Putisolvins are secreted in the culture medium during growth at late exponential phase, indicating that production is possibly regulated by quorum sensing. In the present study, we identified a quorum-sensing system in PCL1445 that is composed of ppuI, rsaL, and ppuR and shows very high similarity with gene clusters of P. putida strains IsoF and WCS358. Strains with mutations in ppuI and ppuR showed a severe reduction of putisolvin production. Expression analysis of the putisolvin biosynthetic gene in a ppuI background showed decreased expression, which could be complemented by the addition of synthetic 3-oxo-C(10)-N-acyl homoserine lactone (3-oxo-C(10)-AHL) or 3-oxo-C(12)-AHL to the medium. An rsaL mutant overproduces AHLs, and production of putisolvins is induced early during growth. Analysis of biofilm formation on polyvinylchloride showed that ppuI and ppuR mutants produce a denser biofilm than PCL1445, which correlates with decreased production of putisolvins, whereas an rsaL mutant shows a delay in biofilm production, which correlates with early production of putisolvins. The results demonstrate that quorum-sensing signals induce the production of cyclic lipopeptides putisolvin I and II and consequently control biofilm formation by Pseudomonas putida.
Journal of Bacteriology | 2005
Jean-Frédéric Dubern; Ellen L. Lagendijk; Ben J. J. Lugtenberg; Guido V. Bloemberg
Pseudomonas putida PCL1445 produces two cyclic lipopeptides, putisolvins I and II, which possess surfactant activity and play an important role in biofilm formation and degradation. In order to identify genes and traits that are involved in the regulation of putisolvin production of PCL1445, a Tn5luxAB library was generated and mutants were selected for the lack of biosurfactant production using a drop-collapsing assay. Sequence analysis of the Tn5luxAB flanking region of one biosurfactant mutant, strain PCL1627, showed that the transposon had inserted in a dnaK homologue which is located downstream of grpE and upstream of dnaJ. Analysis of putisolvin production and expression studies indicate that dnaK, together with the dnaJ and grpE heat shock genes, takes part in the positive regulation (directly or indirectly) of putisolvin biosynthesis at the transcriptional level. Growth of PCL1445 at low temperature resulted in an increased level of putisolvins, and mutant analyses showed that this requires dnaK and dnaJ but not grpE. In addition, putisolvin biosynthesis of PCL1445 was found to be dependent on the GacA/GacS two-component signaling system. Expression analysis indicated that dnaK is positively regulated by GacA/GacS.
Microbiology | 2008
Jean-Frédéric Dubern; Eric R. Coppoolse; Willem J. Stiekema; Guido V. Bloemberg
Pseudomonas putida PCL1445 secretes two cyclic lipopeptides, putisolvin I and putisolvin II, which possess a surface-tension-reducing ability, and are able to inhibit biofilm formation and to break down biofilms of Pseudomonas species including Pseudomonas aeruginosa. The putisolvin synthetase gene cluster (pso) and its surrounding region were isolated, sequenced and characterized. Three genes, termed psoA, psoB and psoC, were identified and shown to be involved in putisolvin biosynthesis. The gene products encode the 12 modules responsible for the binding of the 12 amino acids of the putisolvin peptide moiety. Sequence data indicate that the adenylation domain of the 11th module prioritizes the recognition of Val instead of Leu or Ile and consequently favours putisolvin I production over putisolvin II. Detailed analysis of the thiolation domains suggests that the first nine modules recognize the d form of the amino acid residues while the two following modules recognize the l form and the last module the l or d form, indifferently. The psoR gene, which is located upstream of psoA, shows high similarity to luxR-type regulatory genes and is required for the expression of the pso cluster. In addition, two genes, macA and macB, located downstream of psoC were identified and shown to be involved in putisolvin production or export.
Research in Microbiology | 2011
Regina Fernández-Piñar; Miguel Cámara; Jean-Frédéric Dubern; Juan L. Ramos; Manuel Espinosa-Urgel
The molecule 2-heptyl-3-hydroxy-4-quinolone (referred to as the Pseudomonas quinolone signal, or PQS) is produced by Pseudomonas aeruginosa as part of its quorum sensing circuit, and has been shown to influence a variety of processes in this bacterium, including the production of siderophores and secondary metabolites, virulence determinants and biofilm development. In this report we present evidence of the effect of PQS as an interspecies signal with a negative impact on the multicellular behaviour of Pseudomonas putida KT2440. PQS reduces biofilm formation and swarming motility, and interferes with iron uptake by this bacterium. Addition of PQS also causes changes in the transcription of several P. putida genes, indicating a specific response to the signal molecule, which is not produced by strain KT2440. Among the genes with increased expression in response to PQS is PP1563, which forms part of a large prophage cluster (PP1532-PP1584); consistently, phage-mediated lysis of some cells in the population was observed in the presence of PQS. Overall, these data indicate that PQS may be used by P. aeruginosa as a chemical weapon against potential competitors.
Environmental Microbiology Reports | 2012
Regina Fernández-Piñar; Manuel Espinosa-Urgel; Jean-Frédéric Dubern; Stephan Heeb; Juan L. Ramos; Miguel Cámara
We report the identification of fatty acids as mediators of intercellular signalling in Pseudomonas putida, and between Pseudomonas aeruginosa and P. putida. Tetradecanoic acid and fatty acids of similar chain length are present in supernatants of these strains and activate population density-dependent expression of ddcA, a gene involved in corn seed and root colonization by P. putida KT2440. Consistently, significant amounts of these compounds were also found in corn root exudates. The signalling pathway involves the two-component regulatory system formed by RoxS and RoxR, which had been previously shown to control expression of ddcA and of a set of genes related to the redox balance of P. putida cells. Production of the fatty acid signal in P. aeruginosa is under the control of the LasI/LasR and RhlI/RhlR quorum sensing systems. Our data indicate that in terms of cell-cell communication, P. putida KT2440 employs mechanisms closer to those of plant pathogens such as Xanthomonas spp. and fungi like Candida, which also rely on fatty acid derivatives.
Nucleic Acids Research | 2016
Tuval Ben Yehezkel; Arnaud Rival; Ofir Raz; Rafael Cohen; Zipora Marx; Miguel Cámara; Jean-Frédéric Dubern; Birgit Koch; Stephan Heeb; Natalio Krasnogor; Cyril Delattre; Ehud Shapiro
Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development.
PLOS ONE | 2015
Jun Li; Yang Yang; Jean-Frédéric Dubern; Hui Li; Nigel Halliday; Leonid Chernin; Kexiang Gao; Miguel Cámara; Xiaoguang Liu
The GacS/GacA two-component system plays a central role in the regulation of a broad range of biological functions in many bacteria. In the biocontrol organism Pseudomonas chlororaphis, the Gac system has been shown to positively control quorum sensing, biofilm formation, and phenazine production, but has an overall negative impact on motility. These studies have been performed with strains originated from the rhizosphere predominantly. To investigate the level of conservation between the GacA regulation of biocontrol-related traits in P. chlororaphis isolates from different habitats, the studies presented here focused on the endophytic isolate G5 of P. chlororaphis subsp. aurantiaca. A gacA mutant deficient in the production of N-acylhomoserine lactones (AHLs) and phenazine was isolated through transposon mutagenesis. Further phenotypic characterization revealed that in strain G5, similar to other P. chlororaphis strains, a gacA mutation caused inability to produce biocontrol factors such as phenazine, HCN and proteases responsible for antifungal activity, but overproduced siderophores. LC-MS/MS analysis revealed that AHL production was also practically abolished in this mutant. However, the wild type exhibited an extremely diverse AHL pattern which has never been identified in P. chlororaphis. In contrast to other isolates of this organism, GacA in strain G5 was shown to negatively regulate biofilm formation and oxidative stress response whilst positively regulating cell motility and biosynthesis of indole-3-acetic acid (IAA). To gain a better understanding of the overall impact of GacA in G5, a comparative proteomic analysis was performed revealing that, in addition to some of the traits like phenazine mentioned above, GacA also negatively regulated lipopolysaccharide (LPS) and trehalose biosynthesis whilst having a positive impact on energy metabolism, an effect not previously described in P. chlororaphis. Consequently, GacA regulation shows a differential strain dependency which is likely to be in line with their niche of origin.
Molecules | 2018
Fadi Soukarieh; Eduard Vico Oton; Jean-Frédéric Dubern; Janice Gomes; Nigel Halliday; Maria de Pilar Crespo; Jonathan Ramírez-Prada; Braulio Insuasty; Rodrigo Abonia; Jairo Quiroga; Stephan Heeb; Paul Williams; Michael J. Stocks; Miguel Cámara
Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis, wound and nosocomial infections, posing a serious burden to public health, due to its antibiotic resistance. The P. aeruginosa Pseudomonas Quinolone System (pqs) quorum sensing system, driven by the activation of the transcriptional regulator, PqsR (MvfR) by alkylquinolone (AQ) signal molecules, is a key player in the regulation of virulence and a potential target for the development of novel antibacterial agents. In this study, we performed in silico docking analysis, coupled with screening using a P. aeruginosa mCTX::PpqsA-lux chromosomal promoter fusion, to identify a series of new PqsR antagonists. The hit compounds inhibited pyocyanin and alkylquinolone signal molecule production in P. aeruginosa PAO1-L and PA14 strains. The inhibitor Ia, which showed the highest activity in PA14, reduced biofilm formation in PAO1-L and PA14, increasing their sensitivity to tobramycin. Furthermore, the hepatic and plasma stabilities for these compounds were determined in both rat and human in vitro microsomal assays, to gain a further understanding of their therapeutic potential. This work has uncovered a new class of P. aeruginosa PqsR antagonists with potential for hit to lead optimisation in the search for quorum sensing inhibitors for future anti-infective drug discovery programs.
Molecular BioSystems | 2008
Jean-Frédéric Dubern; Stephen P. Diggle