Jean-Marc Taymans
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Marc Taymans.
The Journal of Neuroscience | 2009
Loukia Parisiadou; Chengsong Xie; Hyun Jin Cho; Xian Lin; Xing-Long Gu; Cai-Xia Long; Evy Lobbestael; Veerle Baekelandt; Jean-Marc Taymans; Lixin Sun; Huaibin Cai
Leucine-rich repeat kinase 2 (LRRK2) functions as a putative protein kinase of ezrin, radixin, and moesin (ERM) family proteins. A Parkinsons disease-related G2019S substitution in the kinase domain of LRRK2 further enhances the phosphorylation of ERM proteins. The phosphorylated ERM (pERM) proteins are restricted to the filopodia of growing neurites in which they tether filamentous actin (F-actin) to the cytoplasmic membrane and regulate the dynamics of filopodia protrusion. Here, we show that, in cultured neurons derived from LRRK2 G2019S transgenic mice, the number of pERM-positive and F-actin-enriched filopodia was significantly increased, and this correlates with the retardation of neurite outgrowth. Conversely, deletion of LRRK2, which lowered the pERM and F-actin contents in filopodia, promoted neurite outgrowth. Furthermore, inhibition of ERM phosphorylation or actin polymerization rescued the G2019S-dependent neuronal growth defects. These data support a model in which the G2019S mutation of LRRK2 causes a gain-of-function effect that perturbs the homeostasis of pERM and F-actin in sprouting neurites critical for neuronal morphogenesis.
Journal of Biological Chemistry | 2008
Elisa Greggio; Ibardo Zambrano; Alice Kaganovich; Alexandra Beilina; Jean-Marc Taymans; Veronique Daniëls; Patrick A. Lewis; Shushant Jain; Jinhui Ding; Ali Syed; Kelly Jean Thomas; Veerle Baekelandt; Mark R. Cookson
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and apparently sporadic Parkinson disease. LRRK2 is a multidomain protein kinase with autophosphorylation activity. It has previously been shown that the kinase activity of LRRK2 is required for neuronal toxicity, suggesting that understanding the mechanism of kinase activation and regulation may be important for the development of specific kinase inhibitors for Parkinson disease treatment. Here, we show that LRRK2 predominantly exists as a dimer under native conditions, a state that appears to be stabilized by multiple domain-domain interactions. Furthermore, an intact C terminus, but not N terminus, is required for autophosphorylation activity. We identify two residues in the activation loop that contribute to the regulation of LRRK2 autophosphorylation. Finally, we demonstrate that LRRK2 undergoes intramolecular autophosphorylation. Together, these results provide insight into the mechanism and regulation of LRRK2 kinase activity.
Journal of Neurochemistry | 2006
Jean-Marc Taymans; Chris Van den Haute; Veerle Baekelandt
Mutations in two kinases, PTEN induced kinase 1 (PINK1) and leucine‐rich repeat kinase 2 (LRRK2), have been shown to segregate with familial forms of Parkinsons disease. Although these two genes are expected to be involved in molecular mechanisms relevant to Parkinsons disease, their precise anatomical localization in mammalian brain is unknown. We have mapped the expression of PINK1 and LRRK2 mRNA in the rat and mouse brain via in situ hybridization histochemistry using riboprobes. We found that both genes are broadly expressed throughout the brain with similar neuroanatomical distribution in mouse compared to rat. PINK1 mRNA abundance was rather uniform throughout the different brain regions with expression in cortex, striatum, thalamus, brainstem and cerebellum. LRRK2, on the other hand, showed strong regional differences in expression levels with highest levels seen in the striatum, cortex and hippocampus. Weak LRRK2 expression was seen in the hypothalamus, olfactory bulb and substantia nigra. We confirmed these distributions for both genes using quantitative RT‐PCR and for LRRK2 by western immunoblot. As their broad expression patterns contrast with localized neuropathology in Parkinsons disease, the pathogenicity of clinical mutant forms of PINK1 and LRRK2 may be mediated by nigrostriatal‐specific mechanisms.
Biochemical and Biophysical Research Communications | 2009
Elisa Greggio; Jean-Marc Taymans; Eugene Yuejun Zhen; John Ryder; Renée Vancraenenbroeck; Alexandra Beilina; Peng Sun; Junpeng Deng; Howard Jaffe; Veerle Baekelandt; Kalpana M. Merchant; Mark R. Cookson
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of inherited Parkinsons disease (PD). The protein is large and complex, but pathogenic mutations cluster in a region containing GTPase and kinase domains. LRRK2 can autophosphorylate in vitro within a dimer pair, although the significance of this reaction is unclear. Here, we mapped the sites of autophosphorylation within LRRK2 and found several potential phosphorylation sites within the GTPase domain. Using mass spectrometry, we found that Thr1343 is phosphorylated and, using kinase dead versions of LRRK2, show that this is an autophosphorylation site. However, we also find evidence for additional sites in the GTPase domain and in other regions of the protein suggesting that there may be multiple autophosphorylation sites within LRRK2. These data suggest that the kinase and GTPase activities of LRRK2 may exhibit complex autoregulatory interdependence.
BMC Neuroscience | 2010
Caroline Vandeputte; Jean-Marc Taymans; Cindy Casteels; Frea Coun; Yicheng Ni; Koen Van Laere; Veerle Baekelandt
BackgroundAccurate and reproducible behavioral tests in animal models are of major importance in the development and evaluation of new therapies for central nervous system disease. In this study we investigated for the first time gait parameters of rat models for Parkinsons disease (PD), Huntingtons disease (HD) and stroke using the Catwalk method, a novel automated gait analysis test. Static and dynamic gait parameters were measured in all animal models, and these data were compared to readouts of established behavioral tests, such as the cylinder test in the PD and stroke rats and the rotarod tests for the HD group.ResultsHemiparkinsonian rats were generated by unilateral injection of the neurotoxin 6-hydroxydopamine in the striatum or in the medial forebrain bundle. For Huntingtons disease, a transgenic rat model expressing a truncated huntingtin fragment with multiple CAG repeats was used. Thirdly, a stroke model was generated by a photothrombotic induced infarct in the right sensorimotor cortex. We found that multiple gait parameters were significantly altered in all three disease models compared to their respective controls. Behavioural deficits could be efficiently measured using the cylinder test in the PD and stroke animals, and in the case of the PD model, the deficits in gait essentially confirmed results obtained by the cylinder test. However, in the HD model and the stroke model the Catwalk analysis proved more sensitive than the rotarod test and also added new and more detailed information on specific gait parameters.ConclusionThe automated quantitative gait analysis test may be a useful tool to study both motor impairment and recovery associated with various neurological motor disorders.
Journal of Neurochemistry | 2011
Veronique Daniëls; Renée Vancraenenbroeck; Bernard M.H. Law; Elisa Greggio; Evy Lobbestael; Fangye Gao; Marc De Maeyer; Mark R. Cookson; Kirsten Harvey; Veerle Baekelandt; Jean-Marc Taymans
J. Neurochem. (2011) 116, 304–315.
PLOS ONE | 2010
Azad Kumar; Elisa Greggio; Alexandra Beilina; Alice Kaganovich; Diane Chan; Jean-Marc Taymans; Benjamin Wolozin; Mark R. Cookson
Mutations in the gene encoding Leucine-rich repeat kinase 2 (LRRK2) are the most common cause of inherited Parkinsons disease (PD). LRRK2 is a multi-domain protein kinase containing a central catalytic core and a number of protein-protein interaction domains. An important step forward in the understanding of both the biology and the pathology of LRRK2 would be achieved by identification of its authentic physiological substrates. In the present study we examined phosphorylation of 4E-BP (eukaryotic initiation factor 4E (eIF4E)-binding protein), a recently proposed substrate for LRRKs. We found that LRRK2 is capable of phosphorylating 4E-BP in vitro. The PD related LRRK2-G2019S mutant was ∼2 fold more active than wild type protein. However, LRRK2 autophosphorylation was stronger than 4E-BP phosphorylation under conditions of molar excess of 4E-BP to LRRK2. We also tested three other kinases (STK3, MAPK14/p38α and DAPK2) and found that MAPK14/p38α could efficiently phosphorylate 4E-BP at the same site as LRRK2 in vitro. Finally, we did not see changes in 4E-BP phosphorylation levels using inducible expression of LRRK2 in HEK cell lines. We also found that MAPK14/p38α phosphorylates 4E-BP in transient overexpression experiments whereas LRRK2 did not. We suggest that increased 4E-BP phosphorylation reported in some systems may be related to p38-mediated cell stress rather than direct LRRK2 activity. Overall, our results suggest that 4E-BP is a relatively poor direct substrate for LRRK2.
PLOS ONE | 2011
Jean-Marc Taymans; Renée Vancraenenbroeck; Petri Ollikainen; Alexandra Beilina; Evy Lobbestael; Marc De Maeyer; Veerle Baekelandt; Mark R. Cookson
Leucine rich repeat kinase 2 (LRRK2) is a Parkinsons disease (PD) gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound “on” state and a GDP bound “off” state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC) GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.
The Journal of Neuroscience | 2010
Melanie Gérard; Angélique Deleersnijder; Veronique Daniëls; Sarah Schreurs; Sebastian Munck; Veerle Reumers; Hans Pottel; Yves Engelborghs; Chris Van den Haute; Jean-Marc Taymans; Zeger Debyser; Veerle Baekelandt
α-Synuclein (α-SYN) is a key player in the pathogenesis of Parkinsons disease (PD). In pathological conditions, the protein is present in a fibrillar, aggregated form inside cytoplasmic inclusions called Lewy bodies. Members of the FK506 binding protein (FKBP) family are peptidyl-prolyl isomerases that were shown recently to accelerate the aggregation of α-SYN in vitro. We now established a neuronal cell culture model for synucleinopathy based on oxidative stress-induced α-SYN aggregation and apoptosis. Using high-content analysis, we examined the role of FKBPs in aggregation and apoptotic cell death. FK506, a specific inhibitor of this family of proteins, inhibited α-SYN aggregation and neuronal cell death in this synucleinopathy model dose dependently. Knockdown of FKBP12 or FKBP52 reduced the number of α-SYN aggregates and protected against cell death, whereas overexpression of FKBP12 or FKBP52 accelerated both aggregation of α-SYN and cell death. Thus, FK506 likely targets FKBP members in the cell culture model. Furthermore, oral administration of FK506 after viral vector-mediated overexpression of α-SYN in adult mouse brain significantly reduced α-SYN aggregate formation and neuronal cell death. Our data explain previously described neuroregenerative and neuroprotective effects of immunophilin ligands and validate FKBPs as a novel drug target for the causative treatment of PD.
PLOS ONE | 2012
Laura Civiero; Renée Vancraenenbroeck; Elisa Belluzzi; Alexandra Beilina; Evy Lobbestael; Lauran Reyniers; Fangye Gao; Ivan Mičetić; Marc De Maeyer; Luigi Bubacco; Veerle Baekelandt; Mark R. Cookson; Elisa Greggio; Jean-Marc Taymans
Leucine-rich repeat kinase 1 and 2 (LRRK1 and LRRK2) are large multidomain proteins containing kinase, GTPase and multiple protein-protein interaction domains, but only mutations in LRRK2 are linked to familial Parkinsons disease (PD). Independent studies suggest that LRRK2 exists in the cell as a complex compatible with the size of a dimer. However, whether this complex is truly a homodimer or a heterologous complex formed by monomeric LRRK2 with other proteins has not been definitively proven due to the limitations in obtaining highly pure proteins suitable for structural characterization. Here, we used stable expression of LRRK1 and LRRK2 in HEK293T cell lines to produce recombinant LRRK1 and LRRK2 proteins of greater than 90% purity. Both purified LRRKs are folded, with a predominantly alpha-helical secondary structure and are capable of binding GTP with similar affinity. Furthermore, recombinant LRRK2 exhibits robust autophosphorylation activity, phosphorylation of model peptides in vitro and ATP binding. In contrast, LRRK1 does not display significant autophosphorylation activity and fails to phosphorylate LRRK2 model substrates, although it does bind ATP. Using these biochemically validated proteins, we show that LRRK1 and LRRK2 are capable of forming homodimers as shown by single-particle transmission electron microscopy and immunogold labeling. These LRRK dimers display an elongated conformation with a mean particle size of 145 Å and 175 Å respectively, which is disrupted by addition of 6M guanidinium chloride. Immunogold staining revealed double-labeled particles also in the pathological LRRK2 mutant G2019S and artificial mutants disrupting GTPase and kinase activities, suggesting that point mutations do not hinder the dimeric conformation. Overall, our findings indicate for the first time that purified and active LRRK1 and LRRK2 can form dimers in their full-length conformation.