Marc De Maeyer
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc De Maeyer.
Nature Chemical Biology | 2010
Frauke Christ; Arnout Voet; Arnaud Marchand; Stefan Nicolet; Belete Ayele Desimmie; Damien Marchand; Dorothée Bardiot; Nam Joo Van der Veken; Barbara Van Remoortel; Sergei V. Strelkov; Marc De Maeyer; Patrick Chaltin; Zeger Debyser
Lens epithelium-derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase that promotes viral integration by tethering the preintegration complex to the chromatin. By virtue of its crucial role in the early steps of HIV replication, the interaction between LEDGF/p75 and integrase represents an attractive target for antiviral therapy. We have rationally designed a series of 2-(quinolin-3-yl)acetic acid derivatives (LEDGINs) that act as potent inhibitors of the LEDGF/p75-integrase interaction and HIV-1 replication at submicromolar concentration by blocking the integration step. A 1.84-A resolution crystal structure corroborates the binding of the inhibitor in the LEDGF/p75-binding pocket of integrase. Together with the lack of cross-resistance with two clinical integrase inhibitors, these findings define the 2-(quinolin-3-yl)acetic acid derivatives as the first genuine allosteric HIV-1 integrase inhibitors. Our work demonstrates the feasibility of rational design of small molecules inhibiting the protein-protein interaction between a viral protein and a cellular host factor.
Folding and Design | 1997
Marc De Maeyer; Johan Desmet; Ignace Lasters
BACKGROUND About a decade ago, the concept of rotamer libraries was introduced to model sidechains given known mainchain coordinates. Since then, several groups have developed methods to handle the challenging combinatorial problem that is faced when searching rotamer libraries. To avoid a combinatorial explosion, the dead-end elimination method detects and eliminates rotamers that cannot be members of the global minimum energy conformation (GMEC). Several groups have applied and further developed this method in the fields of homology modelling and protein design. RESULTS This work addresses at the same time increased prediction accuracy and calculation speed improvements. The proposed enhancements allow the elimination of more than one-third of the possible rotameric states before applying the dead-end elimination method. This is achieved by using a highly detailed rotamer library allowing the safe application of an energy-based rejection criterion without risking the elimination of a GMEC rotamer. As a result, we gain both in modelling accuracy and in computational speed. Being completely automated, the current implementation of the dead-end elimination prediction of protein sidechains can be applied to the modelling of sidechains of proteins of any size on the high-end computer systems currently used in molecular modelling. The improved accuracy is highlighted in a comparative study on a collection of proteins of varying size for which score results have previously been published by multiple groups. Furthermore, we propose a new validation method for the scoring of the modelled structure versus the experimental data based upon the volume overlap of the predicted and observed sidechains. This overlap criterion is discussed in relation to the classic RMSD and the frequently used +/- 40 degrees window in comparing chi 1 and chi 2 angles. CONCLUSIONS We have shown that a very detailed library allows the introduction of a safe energy threshold rejection criterion, thereby increasing both the execution speed and the accuracy of the modelling program. We speculate that the current method will allow the sidechain prediction of medium-sized proteins and complex protein interfaces involving up to 150 residues on low-end desktop computers.
Nature Structural & Molecular Biology | 2002
Christel Verboven; Anja Rabijns; Marc De Maeyer; Hugo Van Baelen; Roger Bouillon; Camiel J. De Ranter
The human serum vitamin D-binding protein (DBP) has many physiologically important functions, ranging from transporting vitamin D3 metabolites, binding and sequestering globular actin and binding fatty acids to functioning in the immune system. Here we report the 2.3 Å crystal structure of DBP in complex with 25-hydroxyvitamin D3, a vitamin D3 metabolite, which reveals the vitamin D-binding site in the N-terminal part of domain I. To more explicitly explore this, we also studied the structure of DBP in complex with a vitamin D3 analog. Comparisons with the structure of human serum albumin, another family member, reveal a similar topology but also significant differences in overall, as well as local, folding. These observed structural differences explain the unique vitamin D3-binding property of DBP.
PLOS Pathogens | 2007
Anneleen Hombrouck; Jan De Rijck; Jelle Hendrix; Linos Vandekerckhove; Arnout Voet; Marc De Maeyer; Myriam Witvrouw; Yves Engelborghs; Frauke Christ; Rik Gijsbers; Zeger Debyser
Retroviruses by definition insert their viral genome into the host cell chromosome. Although the key player of retroviral integration is viral integrase, a role for cellular cofactors has been proposed. Lentiviral integrases use the cellular protein LEDGF/p75 to tether the preintegration complex to the chromosome, although the existence of alternative host proteins substituting for the function of LEDGF/p75 in integration has been proposed. Truncation mutants of LEDGF/p75 lacking the chromosome attachment site strongly inhibit HIV replication by competition for the interaction with integrase. In an attempt to select HIV strains that can overcome the inhibition, we now have used T-cell lines that stably express a C-terminal fragment of LEDGF/p75. Despite resistance development, the affinity of integrase for LEDGF/p75 is reduced and replication kinetics in human primary T cells is impaired. Detection of the integrase mutations A128T and E170G at key positions in the LEDGF/p75–integrase interface provides in vivo evidence for previously reported crystallographic data. Moreover, the complementary inhibition by LEDGF/p75 knockdown and mutagenesis at the integrase–LEDGF/p75 interface points to the incapability of HIV to circumvent LEDGF/p75 function during proviral integration. Altogether, the data provide a striking example of the power of viral molecular evolution. The results underline the importance of the LEDGF/p75 HIV-1 interplay as target for innovative antiviral therapy. Moreover, the role of LEDGF/p75 in targeting integration will stimulate research on strategies to direct gene therapy vectors into safe landing sites.
Journal of Virology | 2003
Valery Fikkert; Bénédicte Van Maele; Jo Vercammen; Anke Hantson; Barbara Van Remoortel; Martine Michiels; Cristina Gurnari; Christophe Pannecouque; Marc De Maeyer; Yves Engelborghs; Erik De Clercq; Zeger Debyser; Myriam Witvrouw
ABSTRACT The diketo acid L-708,906 has been reported to be a selective inhibitor of the strand transfer step of the human immunodeficiency virus type 1 (HIV-1) integration process (D. Hazuda, P. Felock, M. Witmer, A. Wolfe, K. Stillmock, J. A. Grobler, A. Espeseth, L. Gabryelski, W. Schleif, C. Blau, and M. D. Miller, Science 287:646-650, 2000). We have now studied the development of antiviral resistance to L-708,906 by growing HIV-1 strains in the presence of increasing concentrations of the compound. The mutations T66I, L74M, and S230R emerged successively in the integrase gene. The virus with three mutations (T66I L74M S230R) was 10-fold less susceptible to L-708,906, while displaying the sensitivity of the wild-type virus to inhibitors of the RT or PRO or viral entry process. Chimeric HIV-1 strains containing the mutant integrase genes displayed the same resistance profile as the in vitro-selected strains, corroborating the impact of the reported mutations on the resistance phenotype. Phenotypic cross-resistance to S-1360, a diketo analogue in clinical trials, was observed for all strains. Interestingly, the diketo acid-resistant strain remained fully sensitive to V-165, a novel integrase inhibitor (C. Pannecouque, W. Pluymers, B. Van Maele, V. Tetz, P. Cherepanov, E. De Clercq, M. Witvrouw, and Z. Debyser, Curr. Biol. 12:1169-1177, 2002). Antiviral resistance was also studied at the level of recombinant integrase. Single mutations did not appear to impair specific enzymatic activity. However, 3′ processing and strand transfer activities of the recombinant integrases with two (T66I L74M) and three (T66I L74M S230R) mutations were notably lower than those of the wild-type integrase. Although the virus with three mutations was resistant to inhibition by diketo acids, the sensitivity of the corresponding enzyme to L-708,906 or S-1360 was reduced only two- to threefold. As to the replication kinetics of the selected strains, the replication fitness for all strains was lower than that of the wild-type HIV-1 strain.
Journal of Neurochemistry | 2011
Veronique Daniëls; Renée Vancraenenbroeck; Bernard M.H. Law; Elisa Greggio; Evy Lobbestael; Fangye Gao; Marc De Maeyer; Mark R. Cookson; Kirsten Harvey; Veerle Baekelandt; Jean-Marc Taymans
J. Neurochem. (2011) 116, 304–315.
PLOS ONE | 2011
Jean-Marc Taymans; Renée Vancraenenbroeck; Petri Ollikainen; Alexandra Beilina; Evy Lobbestael; Marc De Maeyer; Veerle Baekelandt; Mark R. Cookson
Leucine rich repeat kinase 2 (LRRK2) is a Parkinsons disease (PD) gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound “on” state and a GDP bound “off” state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC) GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.
AIDS | 2004
Valery Fikkert; Anneleen Hombrouck; Barbara Van Remoortel; Marc De Maeyer; Christophe Pannecouque; Erik De Clercq; Zeger Debyser; Myriam Witvrouw
Objectives: Study of HIV-1 resistance development to the diketo analogue S-1360, the first HIV-1 integrase strand transfer inhibitor that has entered clinical development. Design: HIV-1(IIIB) was passaged in cell culture in the presence of increasing concentrations of S-1360 (IIIB/S-1360res). Methods: The IIIB/S-1360res strains selected for 30, 50 and 70 passages in the presence of S-1360 were evaluated genotypically by sequencing analysis and phenotypically using the MT-4/MTT assay. Results: Multiple mutations, nine in total, emerged progressively in the catalytic domain of integrase as a result of the selection process. They included T66I and L74M that have both been associated with resistance against the diketo acid L-708,906. After 30, 50 and 70 passages in the presence of S-1360, IIIB/S-1360res displayed a four-, eight- and more than 62-fold reduced susceptibility for S-1360, respectively. Phenotypic cross-resistance to L-708,906 was modest for the IIIB/S-1360res strain selected during 50 passages, but pronounced for the strain selected during 70 passages. Interesting, all IIIB/S-1360res strains remained fully susceptible to the pyranodipyrimidine V-165, an integrase DNA binding inhibitor. Recombination of the mutant integrase genes into wild-type background by integrase-chimeric virus technology entirely reproduced the resistance profile of the IIIB/S-1360res strains. As for the replication kinetics of the selected and recombined strains, reduced replication fitness was measured for all strains when compared with their respective wild-type strains. Conclusions: The accumulation of integrase mutations coincided with an increasing level of (cross-)resistance of IIIB/S-1360res. Integrase-chimeric virus technology confirmed that the integrase mutations are indeed fully responsible for the resistance phenotype of IIIB/S-1360res.
Circulation | 2000
Desire Collen; Peter Sinnaeve; Eddy Demarsin; H Moreau; Marc De Maeyer; Laurent Jespers; Yves Laroche; Frans Van de Werf
BackgroundThrombolytic therapy of acute myocardial infarction (AMI) is evolving toward bolus administration. Derivatization of proteins with polyethylene glycol (PEG) may reduce their clearance. Methods and ResultsA staphylokinase (SakSTAR) variant with 12 amino acid substitutions to reduce its antigenicity, SakSTAR (K35A, E65Q, K74R, E80A, D82A, T90A, E99D, T101S, E108A, K109A, K130T, K135R), and with Ser in position 3 mutated into Cys (code SY161), was derivatized with maleimide-PEG with Mr of 5000 (P5), 10 000 (P10), or 20 000 (P20). The PEGylated variants recognized only one third of the antibodies elicited with wild-type SakSTAR in AMI patients. In experimental animals, plasma clearances were reduced 2.5- to 5-fold with P5, 5- to 20-fold with P10, and 20-fold with P20, and bolus injection induced pulmonary plasma clot lysis at doses inversely related to their clearance. Intravenous bolus injection of 5 mg of the P5, P10, or P20 variants in AMI patients was associated with plasma half-lives (t1/2&agr;) of 13, 30, and 120 minutes and clearances of 75, 43, and 8 mL/min, respectively, compared with 3 minutes and 360 mL/min for SakSTAR. Injection of 5 mg P5 variant restored TIMI-3 flow within 60 minutes in 14 of 18 AMI patients (78%, 95% CI 55% to 91%) and of 2.5 mg in 7 of 11 patients (63%, 95% CI 35% to 85%), both in the absence of fibrinogen degradation. The immunogenicity of the variants was significantly (P <0.002) reduced. ConclusionsThe staphylokinase variant SY161-P5, derivatized with one linear polyethylene glycol molecule of Mr 5000, is a promising fibrin-selective agent for single-bolus coronary thrombolysis.
PLOS ONE | 2012
Laura Civiero; Renée Vancraenenbroeck; Elisa Belluzzi; Alexandra Beilina; Evy Lobbestael; Lauran Reyniers; Fangye Gao; Ivan Mičetić; Marc De Maeyer; Luigi Bubacco; Veerle Baekelandt; Mark R. Cookson; Elisa Greggio; Jean-Marc Taymans
Leucine-rich repeat kinase 1 and 2 (LRRK1 and LRRK2) are large multidomain proteins containing kinase, GTPase and multiple protein-protein interaction domains, but only mutations in LRRK2 are linked to familial Parkinsons disease (PD). Independent studies suggest that LRRK2 exists in the cell as a complex compatible with the size of a dimer. However, whether this complex is truly a homodimer or a heterologous complex formed by monomeric LRRK2 with other proteins has not been definitively proven due to the limitations in obtaining highly pure proteins suitable for structural characterization. Here, we used stable expression of LRRK1 and LRRK2 in HEK293T cell lines to produce recombinant LRRK1 and LRRK2 proteins of greater than 90% purity. Both purified LRRKs are folded, with a predominantly alpha-helical secondary structure and are capable of binding GTP with similar affinity. Furthermore, recombinant LRRK2 exhibits robust autophosphorylation activity, phosphorylation of model peptides in vitro and ATP binding. In contrast, LRRK1 does not display significant autophosphorylation activity and fails to phosphorylate LRRK2 model substrates, although it does bind ATP. Using these biochemically validated proteins, we show that LRRK1 and LRRK2 are capable of forming homodimers as shown by single-particle transmission electron microscopy and immunogold labeling. These LRRK dimers display an elongated conformation with a mean particle size of 145 Å and 175 Å respectively, which is disrupted by addition of 6M guanidinium chloride. Immunogold staining revealed double-labeled particles also in the pathological LRRK2 mutant G2019S and artificial mutants disrupting GTPase and kinase activities, suggesting that point mutations do not hinder the dimeric conformation. Overall, our findings indicate for the first time that purified and active LRRK1 and LRRK2 can form dimers in their full-length conformation.