Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Marc Triscone is active.

Publication


Featured researches published by Jean-Marc Triscone.


Science | 2007

Superconducting interfaces between insulating oxides.

Nicolas Reyren; Stefan Thiel; A. D. Caviglia; L. Fitting Kourkoutis; G. Hammerl; Christoph Richter; C. W. Schneider; T. Kopp; Anna-Sabina Ruetschi; D. Jaccard; M. Gabay; David A. Muller; Jean-Marc Triscone; J. Mannhart

At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of ≅ 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of ≅ 10 nanometers.


Nature | 2008

Electric field control of the LaAlO3/SrTiO3 interface ground state

A. D. Caviglia; Stefano Gariglio; Nicolas Reyren; Didier Jaccard; T. Schneider; M. Gabay; Stefan Thiel; G. Hammerl; J. Mannhart; Jean-Marc Triscone

Interfaces between complex oxides are emerging as one of the most interesting systems in condensed matter physics. In this special setting, in which translational symmetry is artificially broken, a variety of new and unusual electronic phases can be promoted. Theoretical studies predict complex phase diagrams and suggest the key role of the charge carrier density in determining the systems’ ground states. A particularly fascinating system is the conducting interface between the band insulators LaAlO3 and SrTiO3 (ref. 3). Recently two possible ground states have been experimentally identified: a magnetic state and a two-dimensional superconducting condensate. Here we use the electric field effect to explore the phase diagram of the system. The electrostatic tuning of the carrier density allows an on/off switching of superconductivity and drives a quantum phase transition between a two-dimensional superconducting state and an insulating state. Analyses of the magnetotransport properties in the insulating state are consistent with weak localization and do not provide evidence for magnetism. The electric field control of superconductivity demonstrated here opens the way to the development of new mesoscopic superconducting circuits.


Nature | 2003

Electric field effect in correlated oxide systems.

C. H. Ahn; Jean-Marc Triscone; J. Mannhart

Semiconducting field-effect transistors are the workhorses of the modern electronics era. Recently, application of the field-effect approach to compounds other than semiconductors has created opportunities to electrostatically modulate types of correlated electron behaviour—including high-temperature superconductivity and colossal magnetoresistance—and potentially tune the phase transitions in such systems. Here we provide an overview of the achievements in this field and discuss the opportunities brought by the field-effect approach.


Nature | 2008

Improper ferroelectricity in perovskite oxide artificial superlattices

Eric Bousquet; Matthew Dawber; Nicolas Stucki; Céline Lichtensteiger; Patrick Hermet; Stefano Gariglio; Jean-Marc Triscone; Philippe Ghosez

Ferroelectric thin films and superlattices are currently the subject of intensive research because of the interest they raise for technological applications and also because their properties are of fundamental scientific importance. Ferroelectric superlattices allow the tuning of the ferroelectric properties while maintaining perfect crystal structure and a coherent strain, even throughout relatively thick samples. This tuning is achieved in practice by adjusting both the strain, to enhance the polarization, and the composition, to interpolate between the properties of the combined compounds. Here we show that superlattices with very short periods possess a new form of interface coupling, based on rotational distortions, which gives rise to ‘improper’ ferroelectricity. These observations suggest an approach, based on interface engineering, to produce artificial materials with unique properties. By considering ferroelectric/paraelectric PbTiO3/SrTiO3 multilayers, we first show from first principles that the ground-state of the system is not purely ferroelectric but also primarily involves antiferrodistortive rotations of the oxygen atoms in a way compatible with improper ferroelectricity. We then demonstrate experimentally that, in contrast to pure PbTiO3 and SrTiO3 compounds, the multilayer system indeed behaves like a prototypical improper ferroelectric and exhibits a very large dielectric constant of εr ≈ 600, which is also fairly temperature-independent. This behaviour, of practical interest for technological applications, is distinct from that of normal ferroelectrics, for which the dielectric constant is typically large but strongly evolves around the phase transition temperature and also differs from that of previously known improper ferroelectrics that exhibit a temperature-independent but small dielectric constant only.


Applied Physics Letters | 1999

Ferroelectricity in thin perovskite films

Thomas Tybell; C. H. Ahn; Jean-Marc Triscone

We report on the investigation of ferroelectricity in thin tetragonal single-crystalline perovskite films of Pb(Zr0.2Ti0.8)O3 grown by off-axis rf magnetron sputtering. The local ferroelectric properties of atomically smooth films, with thicknesses ranging from a few unit cells to 800 A, were measured using a combination of electric force microscopy and piezoelectric microscopy. The time dependence of the measured signals reveals a stable ferroelectric polarization in films down to thicknesses of 40 A.


Physical Review Letters | 2010

Tunable Rashba spin-orbit interaction at oxide interfaces.

A. D. Caviglia; M. Gabay; Stefano Gariglio; Nicolas Reyren; Claudia Cancellieri; Jean-Marc Triscone

The quasi-two-dimensional electron gas found at the LaAlO{3}/SrTiO{3} interface offers exciting new functionalities, such as tunable superconductivity, and has been proposed as a new nanoelectronics fabrication platform. Here we lay out a new example of an electronic property arising from the interfacial breaking of inversion symmetry, namely, a large Rashba spin-orbit interaction, whose magnitude can be modulated by the application of an external electric field. By means of magnetotransport experiments we explore the evolution of the spin-orbit coupling across the phase diagram of the system. We uncover a steep rise in Rashba interaction occurring around the doping level where a quantum critical point separates the insulating and superconducting ground states of the system.


Physical Review Letters | 2002

Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films

Thomas Tybell; P. Paruch; Thierry Giamarchi; Jean-Marc Triscone

Ferroelectric switching and nanoscale domain dynamics were investigated using atomic force microscopy on monocrystalline Pb(Zr(0.2)Ti(0.8))O(3) thin films. Measurements of domain size versus writing time reveal a two-step domain growth mechanism, in which initial nucleation is followed by radial domain wall motion perpendicular to the polarization direction. The electric field dependence of the domain wall velocity demonstrates that domain wall motion in ferroelectric thin films is a creep process, with the critical exponent mu close to 1. The dimensionality of the films suggests that disorder is at the origin of the observed creep behavior.


Physical Review Letters | 2005

Ferroelectricity and tetragonality in ultrathin PbTiO3 films

Céline Lichtensteiger; Jean-Marc Triscone; Javier Junquera; Philippe Ghosez

The evolution of tetragonality with thickness has been probed in epitaxial c-axis oriented PbTiO3 films with thicknesses ranging from 500 down to 24 A. High resolution x ray pointed out a systematic decrease of the c-axis lattice parameter with decreasing film thickness below 200 A. Using a first-principles model Hamiltonian approach, the decrease in tetragonality is related to a reduction of the polarization attributed to the presence of a residual unscreened depolarizing field. It is shown that films below 50 A display a significantly reduced polarization but still remain ferroelectric.


Nature Materials | 2012

Exchange bias in LaNiO3-LaMnO3 superlattices.

Marta Gibert; Pavlo Zubko; Raoul Scherwitzl; Jorge Íñiguez; Jean-Marc Triscone

The wide spectrum of exotic properties exhibited by transition-metal oxides stems from the complex competition between several quantum interactions. The capacity to select the emergence of specific phases at will is nowadays extensively recognized as key for the design of diverse new devices with tailored functionalities. In this context, interface engineering in complex oxide heterostructures has developed into a flourishing field, enabling not only further tuning of the exceptional properties of these materials, but also giving access to hidden phases and emergent physical phenomena. Here we demonstrate how interfacial interactions can induce a complex magnetic structure in a non-magnetic material. We specifically show that exchange bias can unexpectedly emerge in heterostructures consisting of paramagnetic LaNiO3 (LNO) and ferromagnetic LaMnO3 (LMO). The observation of exchange bias in (111)-oriented LNO-LMO superlattices, manifested as a shift of the magnetization-field loop, not only implies the development of interface-induced magnetism in the paramagnetic LNO layers, but also provides us with a very subtle tool for probing the interfacial coupling between the LNO and LMO layers. First-principles calculations indicate that this interfacial interaction may give rise to an unusual spin order, resembling a spin-density wave, within the LNO layers.


Applied Physics Letters | 2001

Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr0.2Ti0.8)O3 thin films

Thomas Tybell; Jean-Marc Triscone

We demonstrate that atomic force microscopy can be used to precisely manipulate individual sub-50 nm ferroelectric domains in ultrahigh density arrays on high-quality epitaxial Pb(Zr0.2Ti0.8)O3 thin films. Control of domain size was achieved by varying the strength and duration of the voltage pulses used to polarize the material. Domain size was found to depend logarithmically upon the writing time and linearly upon the writing voltage. All domains, including those written with ∼100 ns pulses, remained completely stable for the 7 day duration of the experiment.

Collaboration


Dive into the Jean-Marc Triscone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. D. Caviglia

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge