Jean-Marie Gasc
Collège de France
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Marie Gasc.
The FASEB Journal | 2001
Florence Massiera; May Bloch-Faure; Debbie Ceiler; Kazuo Murakami; Akiyoshi Fukamizu; Jean-Marie Gasc; Annie Quignard-Boulangé; Raymond Negrel; Gérard Ailhaud; Josiane Seydoux; Pierre Meneton; Michèle Teboul
White adipose tissue and liver are important angiotensinogen (AGT) production sites. Until now, plasma AGT was considered to be a reflection of hepatic production. Because plasma AGT concentration has been reported to correlate with blood pressure, and to be associated with body mass index, we investigated whether adipose AGT is released locally and into the blood stream. For this purpose, we have generated transgenic mice either in which adipose AGT is overexpressed or in which AGT expression is restricted to adipose tissue. This was achieved by the use of the aP2 adipocyte‐specific promoter driving the expression of rat agt cDNA in both wild‐type and hypotensive AGT‐deficient mice. Our results show that in both genotypes, targeted expression of AGT in adipose tissue increases fat mass. Mice whose AGT expression is restricted to adipose tissue have AGT circulating in the blood stream, are normotensive, and exhibit restored renal function compared with AGT‐deficient mice. Moreover, mice that overexpress adipose AGT have increased levels of circulating AGT, compared with wild‐type mice, and are hypertensive. These animal models demonstrate that AGT produced by adipose tissue plays a role in both local adipose tissue development and in the endocrine system, which supports a role of adipose AGT in hypertensive obese patients.
Journal of the American College of Cardiology | 2008
Judith C. Sluimer; Jean-Marie Gasc; Job L. van Wanroij; Natasja Kisters; Mathijs Groeneweg; Maarten D. Sollewijn Gelpke; Jack P.M. Cleutjens; Luc H. van den Akker; Pierre Corvol; Bradly G. Wouters; Mat J.A.P. Daemen; A.P.J.J. Bijnens
OBJECTIVES We sought to examine the presence of hypoxia in human carotid atherosclerosis and its association with hypoxia-inducible transcription factor (HIF) and intraplaque angiogenesis. BACKGROUND Atherosclerotic plaques develop intraplaque angiogenesis, which is a typical feature of hypoxic tissue and expression of HIF. METHODS To examine the presence of hypoxia in atherosclerotic plaques, the hypoxia marker pimonidazole was infused before carotid endarterectomy in 7 symptomatic patients. Also, the messenger ribonucleic acid (mRNA) and protein expression of HIF1 alpha, HIF2 alpha, HIF-responsive genes (vascular endothelial growth factor [VEGF], glucose transporter [GLUT]1, GLUT3, hexokinase [HK]1, and HK2), and microvessel density were determined in a larger series of nondiseased and atherosclerotic carotid arteries with microarray, quantitative reverse transcription polymerase chain reaction, in situ hybridization, and immunohistochemistry. RESULTS Pimonidazole immunohistochemistry demonstrated the presence of hypoxia, especially within the macrophage-rich center of the lesions. Hypoxia correlated with the presence of a thrombus, angiogenesis, and expression of CD68, HIF, and VEGF. The mRNA and protein expression of HIF, its target genes, and microvessel density increased from early to stable lesions, but no changes were observed between stable and ruptured lesions. CONCLUSION This is the first study directly demonstrating hypoxia in advanced human atherosclerosis and its correlation with the presence of macrophages and the expression of HIF and VEGF. Also, the HIF pathway was associated with lesion progression and angiogenesis, suggesting its involvement in the response to hypoxia and the regulation of human intraplaque angiogenesis.
American Journal of Pathology | 2003
Sébastien Le Jan; Céline Amy; Aurélie Cazes; Catherine Monnot; Noël Lamandé; Judith Favier; Josette Philippe; Mathilde Sibony; Jean-Marie Gasc; Pierre Corvol; Stéphane Germain
Ischemic and solid tumor tissues are less well perfused than normal tissue, leading to metabolic changes and chronic hypoxia, which in turn promotes angiogenesis. We identified human angiopoietin-like 4 (angptl4) as a gene with hypoxia-induced expression in endothelial cells. We showed that the levels of both mRNA and protein for ANGPTL4 increased in response to hypoxia. When tested in the chicken chorioallantoic membrane assay, ANGPTL4 induced a strong proangiogenic response, independently of vascular endothelial growth factor. In human pathology, ANGPTL4 mRNA is produced in ischemic tissues, in conditions such as critical leg ischemia. In tumors, ANGPTL4 is produced in the hypoxic areas surrounding necrotic regions. We observed particularly high levels of ANGPTL4 mRNA in tumor cells of conventional renal cell carcinoma. Other benign and malignant renal tumor cells do not produce ANGPTL4 mRNA. This molecule therefore seems to be a marker of conventional renal cell carcinoma. ANGPTL4, originally identified as a peroxisome proliferator-activated receptor alpha and gamma target gene, has potential for use as a new diagnostic tool and a potential therapeutic target, modulating angiogenesis both in tumors and in ischemic tissues. This study also suggests that ANGPTL4 may provide a link between metabolic disorders and hypoxia-induced angiogenesis.
Endocrinology | 2009
Laurent Yvan-Charvet; Florence Massiera; Noël Lamandé; Gérard Ailhaud; Michèle Teboul; Naima Moustaid-Moussa; Jean-Marie Gasc; Annie Quignard-Boulangé
Increased angiotensinogen (AGT) production by white adipose tissue has been related to not only obesity but also hypertension. Several studies have highlighted the importance of the angiotensin II type 2 receptor (AT2) in the regulation of blood pressure and fat mass, but the relevance of this transporter in a physiopathological model of increased AGT production, as it occurs in obesity, has not yet been investigated. We used transgenic mice that display either a deletion of AT2 (AT2 KO), an overexpression of AGT (OVEX), or both compound mutants (KOVEX). Results demonstrated that adipocyte hypertrophy and increased lipogenic gene expression induced by adipose AGT overproduction was rescued by deletion of AT2. In line with AGT overexpression, KOVEX and OVEX mice have similar increased plasma AGT levels. However, KOVEX mice display a higher blood pressure than OVEX mice. In kidney, renin expression was clearly reduced in OVEX mice, and its expression was normalized in KOVEX mice. Taken together, we demonstrated that the loss of AT2 expression was sufficient to rescue obesity induced by adipose tissue AGT overexpression and confirmed the necessary role of AT2 for the onset of obesity in this model. Furthermore, despite a reduction of adipose mass in KOVEX, AT2 deficiency caused increased renin production, further worsening the hypertension caused by AGT overexpression.
FEBS Letters | 1999
Judith Favier; Hervé Kempf; Pierre Corvol; Jean-Marie Gasc
EPAS1 is a hypoxia‐inducible transcription factor, highly expressed in vasculature and recently shown to be necessary for catecholamine production during embryogenesis. We report here the cloning and detailed expression pattern of this factor in the chicken embryo. We show that chicken EPAS1 presents an overall identity of 76% with the human sequence and that it is strongly expressed in the blood vessel wall, mostly in endothelial cells, but also in vascular smooth muscle cells. Moreover, we report non‐vascular expression sites: liver, kidney, and, quite interestingly, cells of the sympathetic nervous system where EPAS1 is coexpressed with one of its putative target genes, the tyrosine hydroxylase. EPAS1 could therefore represent the link between the vascular system and the sympathetic nervous system, both sensitive to hypoxia.
The Journal of Pathology | 2005
Judith Favier; Stéphane Germain; Joseph Emmerich; Pierre Corvol; Jean-Marie Gasc
The aim of this study was to identify gene expression governing the balance of angiogenic and angiostatic factors in human ischaemic leg tissues. In situ hybridization was used to screen for the expression of angiogenesis‐related genes in tissues from 13 amputated limbs from patients suffering from critical leg ischaemia. The authors tested for mRNA of hypoxia‐inducible transcription factors 1α and 2α, vascular endothelial growth factor, and its receptors VEGFR‐1 and ‐2, the angiopoietin receptor Tie2, and the anti‐angiogenic molecule thrombospondin 1. The expression levels of the genes in proximal, healthy muscles were compared with those in the distal, ischaemic counterparts. Surprisingly, only thrombospondin 1 was overexpressed in the ischaemic part of the leg of all patients studied. Thrombospondin 1 mRNA was assayed by real‐time RT‐PCR and the gene was overexpressed 20‐fold. The presence of its encoded protein was confirmed by western blotting. The overproduction of this anti‐angiogenic molecule was associated with a decrease in capillary density in the affected muscles. Thrombospondin 1 is thus a marker of chronic ischaemia and may affect angiogenesis in ischaemic tissues. Copyright
Journal of Vascular Research | 2001
Amauri Cruz; Charles Parnot; Domenico Ribatti; Pierre Corvol; Jean-Marie Gasc
We investigated the angiogenic properties of endothelin-1 (ET-1) using a novel experimental approach involving the constant production and release of ET-1, which was achieved by grafting stably transfected Chinese hamster ovary (CHO) (CHO-ET-1) cell aggregates onto the chorioallantoic membrane (CAM) ectoderm. Macroscopic observation showed that CHO-ET-1 cell aggregates formed highly vascularized nodules surrounded by radially rearranged vessels, with a strong angiogenic response. 5-Bromo-2′-deoxy-uridine (BrdU) studies showed an increase in endothelial cell proliferation in the CAM vasculature around CHO-ET-1 nodules. An angiogenic response was also observed with gelatin sponges containing conditioned medium from CHO-ET-1 cells. The specific involvement of ET-1 in the angiogenic effect mediated by CHO-ET-1 was demonstrated by the reduction or abolition of neovascularized CHO-ET-1 nodules by (1) bosentan, a mixed antagonist of ETA/ETB receptors, (2) an ETA receptor antagonist (Ru69986) and (3) phosporamidon, an inhibitor of endothelin-converting enzyme-1 (ECE-1). We also demonstrated that VEGF was involved in CHO-ET-1-mediated angiogenesis, by using a specific inhibitor of VEGF tyrosine kinase receptor activity (PTK787/ZK 222584), which abolished CHO-ET-1 nodule formation and CAM neovascularization. Thus, our results show that exogenous ET-1 mediates angiogenesis in vivo.
Nature Reviews Cardiology | 2006
Christine Hubert; Katia Savary; Jean-Marie Gasc; Pierre Corvol
The role of the renin–angiotensin system was previously thought to be restricted to the cardiovascular system. It now appears that this system also has important functions in other tissues. Hematopoiesis can be affected by inhibitors of the renin system in patients and in various experimental models. The renin system, particularly angiotensin II, has a role in different stages of hematopoiesis, notably during the first wave in the chick embryo (primitive hematopoiesis) and in the human adult (definitive hematopoiesis). In addition, the renin–angiotensin system in mice is involved in reconstitutive hematopoiesis following experimental irradiation; inhibition of this system improved the hematopoietic recovery in this situation. The clinical relevance and therapeutic applications of these findings offer a new area of clinical research. In this article, we review the evidence for a role for the renin system in the control of hematopoiesis at its different stages.
Developmental Dynamics | 2001
Judith Favier; Hervé Kempf; Pierre Corvol; Jean-Marie Gasc
Endothelial PAS protein 1 (EPAS1) is a bHLH‐PAS transcription factor involved in cellular response to hypoxia. Its precise role in angiogenesis is unclear, but several genes essential to vascular development, including those encoding vascular endothelial growth factor (VEGF), its receptor VEGFR‐2 and Tie2, are thought to be targets of EPAS1. To investigate whether this transcription factor and its putative targets were expressed concomitantly, we performed in situ hybridization on serial adjacent sections of human embryos at gestational ages of 3 to 6 weeks. We studied expression of the genes encoding EPAS1, VEGF, VEGFR‐1, and ‐2, Tie2, and its ligands, angiopoietin (Ang) 1 and 2. We also compared these expression profiles with that of hypoxia‐inducible factor 1α (HIF1α). EPAS1 transcripts were detected in several types of endothelial cell: in blood vessels walls, the endocardium, the glomeruli of the mesonephros, and the sinusoids of the liver. In these endothelial cells, expression of EPAS1 systematically or partly coincided with Tie2 and the VEGF receptors expression. There was also some overlap between the sites of synthesis of EPAS1 and VEGF mRNAs, principally in hepatocytes and sympathetic ganglion cells. In addition, we found that EPAS1 and HIF1α transcripts were often colocalized, suggesting a functional redundancy of these two transcription factors during development. These observations are consistent with transactivation by EPAS1 of the expression of its putative target genes during embryogenesis, suggesting that this transcription factor is involved in human angiogenesis. They provide evidence that EPAS1 is involved in the regulation of vascular maturation, remodeling, or stabilization rather than in the early steps of embryonic angiogenesis.
FEBS Letters | 2007
Gabin Sihn; Thomas Walter; Jean-Claude Klein; Isabelle Queguiner; Hiroshi Iwao; Claude Nicolau; Jean-Marie Lehn; Pierre Corvol; Jean-Marie Gasc
We investigate here the anti‐angiogenic properties of the synthetic compound myo‐inositol trispyrophosphate (ITPP). By increasing oxy‐haemoglobin dissociation, ITPP has the potential to counteract the effects of hypoxia, a critical regulator of angiogenesis and cancer progression. ITPP inhibited angiogenesis of the chorioallantoic membrane (CAM), as analyzed with an original program dedicated to automated quantification of angiogenesis in this model. ITPP also markedly reduced tumor progression and angiogenesis in an experimental model of U87 glioma cell nodules grafted onto the CAM. These results point out the potential of ITPP for the development of a new class of anti‐angiogenic and anti‐cancer compounds.