Jean-Marie Sleewaegen
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Marie Sleewaegen.
Gps Solutions | 2012
André Hauschild; Oliver Montenbruck; Jean-Marie Sleewaegen; Lennard Huisman; Peter J. G. Teunissen
An analysis of observations from China’s first medium earth orbit satellite Compass M-1 is presented, with main focus on the first orbit and clock solution for this satellite. The orbit is computed from laser ranging measurements. Based on this orbit solution, the apparent clock offset is estimated using measurements from two GNSS receivers, which allow Compass tracking. The analysis of the clock solutions reveals unexpectedly high dynamics in the pseudorange and carrier-phase observations. Furthermore, carrier-to-noise density ratio, pseudorange noise, and multipath are analyzed and compared to GPS and GIOVE. The results of the clock analysis motivate further research on the signals of the geostationary satellites of the Compass constellation.
International Journal of Navigation and Observation | 2008
Andrew Simsky; David Mertens; Jean-Marie Sleewaegen; Martin Hollreiser; Massimo Crisci
Analysis of GIOVE-A signals is an important part of the in-orbit validation phase of the Galileo program. GIOVE-A transmits the ranging signals using all the code modulations currently foreseen for the future Galileo and provides a foretaste of their performance in real-life applications. Due to the use of advanced code modulations, the ranging signals of Galileo provide significant improvement of the multipath performance as compared to current GPS. In this paper, we summarize the results of about 1.5 years of observations using the data from four antenna sites. The analysis of the elevation dependence of averaged multipath errors and the multipath time series for static data indicate significant suppression of long-range multipath by the best Galileo codes. The E5AltBOC signal is confirmed to be a multipath suppression champion for all the data sets. According to the results of the observations, the Galileo signals can be classified into 3 groups: high-performance (E5AltBOC, L1A, E6A), medium-performance (E6BC, E5a, E5b) and an L1BC signal, which has the lowest performance among Galileo signals, but is still better than GPS-CA. The car tests have demonstrated that for kinematic multipath the intersignal differences are a lot less pronounced. The phase multipath performance is also discussed.
Gps Solutions | 1999
Carine Bruyninx; Pascale Defraigne; Jean-Marie Sleewaegen
Recent studies have shown the capabilities of Global Positioning System (GPS) carrier phases for frequency transfer based on the observations from geodetic GPS receivers driven by stable atomic clocks. This kind of receiver configuration is the kind primarily used within the framework of the International GPS Service (IGS). The International GPS Service/Bureau International des Poids et Mesures (IGS/BIPM) pilot project aims at taking advantage of these GPS receivers to enlarge the network of Time Laboratories contributing to the realization of the International Atomic Time (TAI).In this article, we outline the theory necessary to describe the abilities and limitations of time and frequency transfer using the GPS code and carrier phase observations. We report on several onsite tests and evaluate the present setup of our 12-channel IGS receiver (BRUS), which uses a hydrogen maser as an external frequency reference, to contribute to the IGS/BIPM pilot project.In the initial experimental setup, the receivers had a common external frequency reference; in the second setup, separate external frequency references were used. Independent external clock monitoring provided the necessary information to validate the results. Using two receivers with a common frequency reference and connected to the same antenna, a zero baseline, we were able to use the carrier phase data to derive a frequency stability of 6 × 10−16 for averaging times of one day. The main limitation in the technique originates from small ambient temperature variations of a few degrees Celsius. While these temperature variations have no effect on the functioning of the GPS receiver within the IGS network, they reduce the capacities of the frequency transfer results based on the carrier phase data. We demonstrate that the synchronization offset at the initial measurement epoch can be estimated from a combined use of the code and carrier phase observations. In our test, the discontinuity between two consecutive days was about 140 ps.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2014
Pascale Defraigne; Wim Aerts; Giancarlo Cerretto; Elena Cantoni; Jean-Marie Sleewaegen
Using global navigation satellite system (GNSS) signals for accurate timing and time transfer requires the knowledge of all electric delays of the signals inside the receiving system. GNSS stations dedicated to timing or time transfer are classically calibrated only for Global Positioning System (GPS) signals. This paper proposes a procedure to determine the hardware delays of a GNSS receiving station for Galileo signals, once the delays of the GPS signals are known. This approach makes use of the broadcast satellite inter-signal biases, and is based on the ionospheric delay measured from dual-frequency combinations of GPS and Galileo signals. The uncertainty on the so-determined hardware delays is estimated to 3.7 ns for each isolated code in the L5 frequency band, and 4.2 ns for the ionosphere-free combination of E1 with a code of the L5 frequency band. For the calibration of a time transfer link between two stations, another approach can be used, based on the difference between the common-view time transfer results obtained with calibrated GPS data and with uncalibrated Galileo data. It is shown that the results obtained with this approach or with the ionospheric method are equivalent.
ieee/ion position, location and navigation symposium | 2006
A. Simsky; Jean-Marie Sleewaegen; P. Nemry; J. Van Hees
The paper contains first results of the noise assessment of the new L2C signal, transmitted by PRN 17 and tracked by the PolaRx2C receiver. The tracking noise and multipath characteristics of L2C and CA codes are compared. In agreement with expectations, average amplitudes of multipath and tracking noise for the CA code and L2C are about equal. Assessment of signal power for the L2C signal is also presented.
international frequency control symposium | 2015
Pascale Defraigne; Jean-Marie Sleewaegen
Precise Point Positioning (PPP) is a zero-difference single-station technique that has proved to be very effective for time and frequency transfer, enabling the comparison of atomic clocks with a precision of a hundred picoseconds and a one day stability below the 1e-15 level. It was however noted that for some receivers, a frequency difference is observed between the clock solution based on the code measurements and the clock solution based on the carrier phase measurements. These observations reveal some inconsistency between the code and carrier phases measured by the receiver. One explanation of this discrepancy is the time offset that can exist for some receivers between the code and carrier phase latching. This paper explains how a code-phase bias in the receiver hardware can induce a frequency difference between the code and the carrier phase clock solutions. The impact on PPP is then quantified. Finally, the possibility to determine this code-phase bias in the PPP modeling is investigated, and the first results are presented.
Gps Solutions | 2018
Anthony M. McCaffrey; P. T. Jayachandran; Richard B. Langley; Jean-Marie Sleewaegen
AbstractThe introduction of the unencrypted global positioning system (GPS) L2 civil (L2C) signal has the potential to improve measurements made with the L2 frequency, an important observable in GPS-based ionospheric research and monitoring. Recent work has shown significant differences between the legacy L2P(Y) and L2C-derived total electron content rate of change index (ROTI). This difference is observed between L2P(Y) and L2C-derived ROTI with certain receiver models and between zero-baseline receiver pairs. We discuss the likely cause for these differences: L1-aided tracking used to track both the L2P(Y) and L2C signals. We also present L2C data that are confirmed to be from tracking independent of L1. Using the ionospheric-free linear combination, we show that the independently tracked carrier phase dynamics are significantly more accurate than the L1-aided observables. This result is confirmed by comparing the behavior of the L2C and L2P(Y) carrier phase observables upon a sudden antenna rotation.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2016
Pascale Defraigne; Jean-Marie Sleewaegen
Precise point positioning (PPP) is a zero-difference single-station technique that has proved to be very effective for time and frequency transfer, enabling the comparison of atomic clocks with a precision of a hundred picoseconds and a one-day stability below the 1e-15 level. It was, however, noted that for some receivers, a frequency difference is observed between the clock solution based on the code measurements and the clock solution based on the carrier-phase measurements. These observations reveal some inconsistency either between the code and carrier phases measured by the receiver or between the data analysis strategy of codes and carrier phases. One explanation for this discrepancy is the time offset that can exist for some receivers between the code and the carrier-phase latching. This paper explains how a code-phase bias in the receiver hardware can induce a frequency difference between the code and the carrier-phase clock solutions. The impact on PPP is then quantified. Finally, the possibility to determine this code-phase bias in the PPP modeling is investigated, and the first results are shown to be inappropriate due to the high level of code noise.
Archive | 2015
Andrew Simsky; Jean-Marie Sleewaegen
This chapter provides a review of existing experimental and professional Galileo receivers, related application projects and selected design topics, such as generic tracking channels, fast acquisition algorithms and AltBOC tracking. Although at the time of writing Galileo as a GNSS system is not yet fully deployed, quite a number of Galileo receivers have already been created with the help of Galileo simulators, mainly in the context of European projects, the most significant being the Galileo Test User Receiver project (TUR). Some Galileo receivers have also been developed to test the signals of experimental Galileo satellites GIOVE-A/B.
Journal of Geophysical Research | 2005
Olivier Verhoeven; Attilio Rivoldini; Pierre Vacher; Antoine Mocquet; G. Choblet; Michel Menvielle; Véronique Dehant; T. Van Hoolst; Jean-Marie Sleewaegen; J. P. Barriot; P. Lognonné